摘要令(X,d,μ)为满足所谓上倍双倍条件和几何双倍条件的度量测度空间.设Mβ,ρ,q为(X,d,μ)上的分数型Marcinkiewicz积分算子.在本文中,作者证明了若β ∈[0,∞),ρ ∈(0,∞),q ∈(1,∞)且Mβ,ρ,q在L2(μ)上有界,则Mβ,ρ,q是从加权Lebesgue空间Lp(w)到加权弱Lebesgue空间Lp,∞(w)上有界和从加权Morrey空间Lp,κ,η(ω)到加权弱Morrey空间WLp,κ,η(ω)上有界. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-08-14 | | 基金资助:国家自然科学基金资助项目(11471042)
| 通讯作者:王宸雁E-mail: chenyanwangcau@126.com | 作者简介: 林海波,E-mail:haibolincau@126.com |
[1] Bui T. A., Duong X. T., Hardy spaces, regularized BMO spaces and the boundedness of Marcinkiewicz operators on non-homogeneous spaces, J. Geom. Anal., 2013, 23:895-932. [2] Coifman R. R., Weiss G., Analyse Harmonique Non-commutative Sur Certains Espaces Homogènes, (French) Étude de Certaines Intégrales Singulières, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin, New York, 1971. [3] Coifman R. R., Weiss G., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 1977, 83:569-645. [4] Fu X., Lin H., Yang Da., et al., Hardy spaces Hp over non-homogeneous metric measure spaces and their applications, Sci. China Math., 2015, 58:309-388. [5] Fu X., Yang Da., Yang Do., The molecular characterization of the Hardy space H1 on non-homogeneous metric measure spaces and its application, J. Math. Anal. Appl., 2014, 410:1028-1042. [6] Grafakos L., Modern Fourier Analysis, 2nd edition, Graduate Texts in Mathematics, Vol. 250, Springer, New York, 2009. [7] Han Y., Müller D., Yang D., A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces, Abstr. Appl. Anal., 2008, Art. ID 893409:1-250. [8] Heinonen J., Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, 2001. [9] Hu G., Lin H., Yang D., Marcinkiewicz integrals with non-doubling measures, Integral Equations Operator Theory, 2007, 58:205-238. [10] Hu G., Meng Y., Yang D., Weighted norm inequalities for multilinear Calderön-Zygmund operators on non-homogeneous metric measure spaces, Forum Math., 2014, 26:1289-1322. [11] Hu G., Yang D., Weighted norm inequalities for maximal singular integrals with nondoubling measures, Studia Math., 2008, 187:101-123. [12] Hytönen T., A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa, Publ. Mat., 2010, 54:485-504. [13] Hytönen T., Yang Da., Yang Do., The Hardy space H1 on non-homogeneous metric spaces, Math. Proc. Cambridge Philos. Soc., 2012, 153:9-31. [14] John F., Quasi-isometric mappings, in:Seminari 1962/63 Anal. Alg. Geom. e Topol. Vil. 2, Ist. Naz. Alta Mat., Ediz. Cremonese, Rome, 1965:462-473. [15] Journé J. L., Calderón-Zygmund Operator, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Mathematics, Vol. 994, Springer-Verlag, Berlin, 1983. [16] Komori J., Weighted estimates for operators generated by maximal functions on nonhomogeneous spaces, Georgian Math. J., 2005, 12:121-130. [17] Lerner A. K., Weighted norm inequalities for the local sharp maximal function, J. Fourier Anal. Appl., 2004, 10:465-474. [18] Lin H., Yang D., Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces, Sci. China Math., 2014, 57:123-144. [19] Lu G., Tao S., Fractional type Marcinkiewicz integrals over non-homogeneous metric measure spaces, J. Inequal. Appl., 2016, 1:259-274. [20] Marcinkiewicz J., Surquelques intégrales du type de Dini, Ann. Soc. Polon. Math., 1938, 17:42-50. [21] Nakamura S., Generalized weighted Morrey spaces and classical operators, Math. Nachr., 2016, 289:2235-2262. [22] Orobitg J., Pérez C., Ap weights for nondoubling measures in Rn and applications, Trans. Amer. Math. Soc., 2002, 354:2013-2033. [23] Sawano Y., Yabuta K., Fractional type Marcinkiewicz integral operators associated to surfaces, J. Inequal. Appl., 2014, 1:232-261. [24] Sawano Y., Yabuta K., Weighted estimates for fractional type Marcinkiewicz integral operators associated to surfaces, In:Some Topics in Harmonic Analysis and Applications, Adv. Lect. Math., 2016, 34:331-367. [25] Stein E. M., On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc., 1958, 88:430-466. [26] Strömberg J. O., Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J., 1979, 28:511-544 [27] Strömberg J. O., Torchinsky A., Weighted Hardy Spaces, Lecture Notes in Math., Vol. 1381, Springer-Verlag, Berlin, 1989. [28] Tolsa X., BMO H1, and Calderón-Zygmund operators for non doubling measures, Math. Ann., 2001, 319:89-149. [29] Tolsa X., Littlewood-Paley theory and the T (1) theorem with non-doubling measures, Adv. Math., 2001, 164:57-116. [30] Tolsa X., Painlevé's problem and the semiadditivity of analytic capacity, Acta Math., 2003, 190:105-149. [31] Tolsa X., Analytic capacity and Calderón-Zygmund theory with non doubling measures, In:Seminar of Mathematical Analysis, 2004, 71:239-271. [32] Wang S., Jiang Y., Li B., Weighted estimated for Marcinkiewicz integral with non-doubling measures, J. Math. Res. Appl., 2012, 32:223-234. [33] Xue Q., Yabuta K., Yan J., Fractional type Marcinkiewicz integral operators on function spaces, Forum Math., 2015, 27(5):3079-3109. [34] Yan Y., Chen J., Lin H., Weighted Morrey spaces on non-homogeneous metric measure spaces, J. Math. Anal. Appl., 2017, 452(1):335-350. [35] Yang Da., Yang Do., Hu G., The Hardy Space H1 with Non-doubling Measures and Their Applications, Lecture Notes in Math., Vol. 2084, Springer-Verlag, Berlin, 2013.
|
[1] | 毛素珍, 孙丽静, 伍火熊. 双线性Fourier乘子交换子的有界性与紧性[J]. 数学学报, 2016, 59(3): 317-334. | [2] | 王华. 具有粗糙核的分数次积分算子在加权Morrey空间上的有界性[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 175-186. | [3] | 王华. 几类具有粗糙核的算子在加权Morrey空间上的有界性[J]. Acta Mathematica Sinica, English Series, 2012, 55(4): 589-600. | [4] | 韩彦昌;许明;. 非齐型空间上Triebel-Lizorkin空间的T1定理[J]. Acta Mathematica Sinica, English Series, 2006, 49(4): 779-790. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23632
TVS-锥度量空间中的统计收敛林艳芳,鲍玲鑫福建农林大学计算机与信息学院福州350002StatisticalConvergenceinTVS-coneMetricSpacesYanFangLIN,LingXinBAOSchoolofComputerandInformation,FujianAgri ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义n-赋范空间中的Vogt定理马玉梅大连民族大学理学院大连116600TheVogtTheoreminG-n-normedSpacesYuMeiMASchoolofScience,DalianMinzuUniversity,Dalian116600,P.R.China摘要图/表参考文献相关文章全文 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Sobolev空间中非电阻MHD方程局部适定性李亚涛中国工程物理研究院研究生院北京100088LocalWell-posednessfortheNon-resistiveMHDEquationsinSobolevSpacesYaTaoLITheGraduateSchoolofChinaAcademy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27变量核奇异积分和分数次微分加权范不等式杨沿奇,陶双平西北师范大学数学与统计学院兰州730070WeightedNormInequalitiesofVariableSingularIntegralsandFractionalDifferentiationYanQiYANG,ShuangPingTAOC ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一些算子的交换子在广义Morrey空间上的紧性郭庆栋,周疆新疆大学数学与系统科学学院乌鲁木齐830046CompactnessofCommutatorsforSomeOperatorsonGeneralizedMorreySpacesQingDongGUO,JiangZHOUCollegeofMat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分数阶Schrdinger-Kirchhoff方程无穷多高能量解的存在性徐家发1,刘立山2,蒋继强21.重庆师范大学数学科学学院重庆401331;2.曲阜师范大学数学科学学院曲阜273165ExistenceofInfinitelyManyHighEnergySolutionsforFr ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27线性矩阵方程组AX=B,YA=D的最小二乘(R,S)-交换解文娅琼1,李姣芬2,黎稳31.桂林电子科技大学数学与计算科学学院桂林541004;2.桂林电子科技大学数学与计算科学学院广西高校数据分析与计算重点实验室桂林541004;3.华南师范大学数学科学学院广州510631TheLea ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27点星网与度量空间的映像林寿1,黄燕晖2,张静21.宁德师范学院数理学院宁德352100;2.闽南师范大学数学与统计学院漳州363000Point-starNetworksandImagesofMetricSpacesShouLIN1,YanHuiHUANG2,JingZHANG21.Schoolof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间度量广义逆的乘积扰动杜法鹏1,薛以锋21.徐州工程学院数学与物理科学学院徐州221008;2.华东师范大学算子代数研究中心上海市核心数学与实践重点实验室华东师范大学数学科学学院上海200241MultiplicativePerturbationsofMetricGeneralized ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27渐近Teichmller空间的不唯一性黄志勇,周泽民中国人民大学数学系北京100872NonuniquenessPropertiesonAsymptoticTeichmullerSpaceZhiYongHUANG,ZeMinZHOUDepartmentofMathematics,Renm ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|