删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

TVS-锥度量空间中的统计收敛

本站小编 Free考研考试/2021-12-27

TVS-锥度量空间中的统计收敛 林艳芳, 鲍玲鑫福建农林大学计算机与信息学院 福州 350002 Statistical Convergence in TVS-cone Metric Spaces Yan Fang LIN, Ling Xin BAOSchool of Computer and Information, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(467 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究TVS-锥度量空间中的统计收敛以及TVS-锥度量空间的统计完备性.令(X,E,P,d)表示一个TVS-锥度量空间.利用定义在有序Hausdorff拓扑向量空间E上的Minkowski函数ρ,证明了在X上存在一个通常意义下的度量dρ,使得X中的序列(xn)在锥度量d意义下统计收敛到xX,当且仅当(xn)在度量dρ意义下统计收敛到x.基于此,我们证明了任意一个TVS-锥统计Cauchy序列是几乎处处TVS-锥Cauchy序列,还证明了任意一个TVS-锥统计收敛的序列是几乎处处TVS-锥收敛的.从而,TVS-锥度量空间(X,d)是d-完备的,当且仅当它是d-统计完备的.基于以上结论,通常度量空间中统计收敛的许多性质都可以平行地推广到锥度量空间中统计收敛的情形.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-11-27
MR (2010):O177
基金资助:国家自然科学基金资助项目(11501108);福建省自然科学基金资助项目(2019J01400);福建农林大学****计划项目(2016011)
通讯作者:鲍玲鑫E-mail: bolingxmu@sina.com
作者简介: 林艳芳,E-mail:yanfang_lin@foxmail.com
引用本文:
林艳芳, 鲍玲鑫. TVS-锥度量空间中的统计收敛[J]. 数学学报, 2020, 63(5): 523-530. Yan Fang LIN, Ling Xin BAO. Statistical Convergence in TVS-cone Metric Spaces. Acta Mathematica Sinica, Chinese Series, 2020, 63(5): 523-530.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I5/523


[1] Bao L., Cheng L., On statistical measure theory, J. Math. Anal. Appl., 2013, 20:413-424.
[2] Bao L., On weak filter convergence and the Radon-Riesz type theorem, Acta Mathematica Scientia, 2016, 36(1):215-219.
[3] Cheng L., Lin G., Lan Y., et al. Measure theory of statistical convergence, Sci. China Ser. A., 2008, 51(2):2285-2303.
[4] Cheng L., Lin G., Shi H., On real-valued measures of statistical type and their applications to statistical convergence, Mathematical and Computer Modelling, 2009, 50:116-122.
[5] Connor J., On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 1989, 32(2):194-198.
[6] Connor J., Ganichev M., Kadets V., A characterization of Banach spaces with separable duals via weak statistical convergence, J. Math. Anal. Appl., 2000, 244(1):251-261.
[7] Du W., A note on cone metric fixed point theory and its equivalence, Nonlinear Anal., 2010, 72:2259-2261.
[8] Fast H., Sur la convergence statistique, Colloq. Math., 1951, 2:241-244.
[9] Fridy J., On statistical convergence, Analysis, 1985, 5:301-313.
[10] Holmes R. B., Geometric Functional Analysis and Its Applications, Springer-Verlag, New York, 1975.
[11] Kadelburg Z., Radenovic S., Rakocevic V., A note on equivalence of some metric and cone metric fixed point results, Applied Mathematics Letters, 2011, 24(2):370-374.
[12] Kadets V., Weak cluster points of a sequence and covering by cylinder, Mat. Fiz. Anal. Geom., 2004, 11(2):161-168.
[13] Kadets V., Leonov A., Orhan C., weak statistical convergence and weak filter convergence for unbounded sequences, J. Math. Anal. Appl., 2010, 371:414-424.
[14] Kostyrko P., Šalát T., Wilczyński W., et al., I-convergence, Real Anal. Exchange, 2000/2001, 26:669-689.
[15] Li K., Lin S., Ge Y., On statistical convergence in cone metric spaces, Topology and Its Applications, 2015, 196:641-651.
[16] Maddox I. J., Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc., 1988, 104:141-145.
[17] Maio G. D., Kocinac L. D. R., Statistical convergence in topology, Topology and its Applications, 2008, 156:28-45.
[18] Šalát T., On statistically convergent sequences of real numbers, Math. Slovaca, 1980, 30(2):139-150.
[19] Steinhaus H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 1951, 2:73-74.

[1]施慧华, 王波. 理想收敛的若干研究及推广[J]. 数学学报, 2016, 59(3): 335-342.
[2]周仙耕, 张敏. 两类统计收敛的表示定理[J]. Acta Mathematica Sinica, English Series, 2010, 53(2): 251-256.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23637
相关话题/统计 空间 序列 数学 福建农林大学