删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Fréchet空间上集值微分方程初值问题解的高阶收敛性

本站小编 Free考研考试/2021-12-27

Fréchet空间上集值微分方程初值问题解的高阶收敛性 王培光, 邢珍钰, 吴曦冉河北大学数学与信息科学学院 保定 071002 Higher-Order Convergence of Solutions of Initial Value Problem for Set Differential Equations in Fréchet Space Pei Guang WANG, Zhen Yu XING, Xi Ran WUCollege of Mathematics and Information Science, Hebei University, Baoding 071002, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(523 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文讨论一类Fréchet空间F上的非线性集值微分方程初值问题解的收敛性.基于Fréchet空间F上所有紧致凸子集构成的空间Kc(F)可视为半线性度量空间Kc(Ei)的投影极限和投影极限的性质,通过引入集值函数的Fréchet偏导数以及集值函数的超凸和超凹性定义,应用比较原理和拟线性方法,对所构造的单调迭代序列进行分析,得到了在Kc(F)空间上集值微分方程初值问题的迭代解序列一致且高阶收敛于方程唯一解的判别准则.所得结果发展了Fréchet空间上的微分方程理论.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-01-20
MR (2010):O175.12
O177.92
基金资助:国家自然科学基金资助项目(11771115,11271106)
作者简介: 王培光,E-mail:pgwang@hbu.edu.cn;邢珍钰,E-mail:smaths2@hbu.edu.cn;吴曦冉,E-mail:xrwu2017@163.com
引用本文:
王培光, 邢珍钰, 吴曦冉. Fréchet空间上集值微分方程初值问题解的高阶收敛性[J]. 数学学报, 2021, 64(3): 427-442. Pei Guang WANG, Zhen Yu XING, Xi Ran WU. Higher-Order Convergence of Solutions of Initial Value Problem for Set Differential Equations in Fréchet Space. Acta Mathematica Sinica, Chinese Series, 2021, 64(3): 427-442.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I3/427


[1] Abbas U., Lupulescu V., Set functional differential equations, Commun. Appl. Nonlinear Anal., 2011, 18:97-110.
[2] Ahmad B., Sivasundaram S., The monotone iterative technique for impulsive hybrid set valued integrodifferential equations, Nonlinear Analysis, 2006, 65:2260-2276.
[3] Bakowska A., Gabor G., Topological structure of solution sets to differential problems in Fréchet spaces, Annales Polonici Mathematici, 2009, 95(1):17-36.
[4] Dalila A. L., Wafiya B., A delay second-order set-valued differential equation with Hukuhara derivatives, Numerical Functional Analysis and Optimization, 2015, 36:704-729.
[5] Deiming K., Ordinary Differential Equations in Banach Spaces, Springer, Berlin, 1977.
[6] Deo S. G., Drici Z., Method of generalized quasilinearization in abstract cones, Nonlinear Studies, 1998, 5(1):25-33.
[7] Dhaigude D. B., Naidu Ch. A., Monotone iterative technique for periodic boundary value problem of set differential equations involving causal operators, Dynamics of Continuous, Discrete and Impulsive Systems Series A:Mathematical Analysis, 2017, 24:133-146.
[8] Djebali S., Górniewicz L., Ouahab A., Topological structure of solution sets for impulsive differential inclusions in Fréchet spaces, Nonlinear Analysis:TMA, 2011, 74(6):2141-2169.
[9] Galanis G. N., On a type of linear differential equations in Fréchet spaces, Ann. Scuola Norm. Sup. Pisa CI. Sci., 1997, 24(3):501-510.
[10] Galanis G. N., Bhaskar T. G., Lakshmikantham V., Set differential equations in Fréchet spaces, Journal of Applied Analysis., 2008, 14(1):103-113.
[11] Galanis G. N., Bhaskar T. G., Lakshmikantham V., et al., Set valued functions in Fréchet spaces:continuity, Hukuhara differentiability and applications to set differential equations, Nonlinear Anal., 2005, 61(4):559-575.
[12] Girton W. T., Set-valued differential equations on time scales, Florida:Ph.D. Thesis, Florida Institute of Technology, 2005.
[13] Hong S., Peng Y., Almost periodicity of set-valued functions and set dynamic equations on time scales, Information Sciences, 2016, 330:157-174.
[14] Hukuhara M., Integration of measurable maps with compact, convex set values, Funkcial. Ekvac., 1967, 10:205-223.
[15] Jiang J., Li C., Chen H., Existence of solutions for set differential equations involving causal operator with memory in Banach space, J. Appl. Math. Comput., 2013, 41:183-196.
[16] Kisielewicz M., Multivalued differential equations in separable Banach spaces, J. Optim. Theory Appl., 1982, 37:231-249.
[17] Ladde G. S., Lakshmikantham V., Vatsala A. S., Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman Publishing, London, 1985.
[18] Lakshmikantham V., Vatsala A. S., Generalized Quasilinearization for Nonlinear Problems, Dordrecht:Kluwer Academic Publishers, 1998.
[19] Lakshmikantham V., Bhaskar T. G., Vasundhara Devi J., Theory of Set Differential Equations in a Metric Space, Cambridge Scientific Publishers Ltd., Cottenham, 2006.
[20] Lupulescu V., Hukuhara differentiability of interval-valued functions and interval differential equations on time scales, Information Sciences, 2013, 248:50-67.
[21] Lupulescu V., Successive approximations to solutions of set differential equations in Banach spaces, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal., 2008, 15:391-401.
[22] Malinowski M. T., On set differential equations in Banach spaces-a second type Hukuhara differentiability approach, Appl. Math. Comput., 2012, 219:289-305.
[23] Malinowski M. T., Michta M., Stochastic set differential equations, Nonlinear Analysis, 2010, 72:1247-1256.
[24] McRae F. A., Vasundhara Devi J., Drici Z., Existence result for periodic boundary value problem of set differential equations using monotone iterative technique, Communications in Applied Analysis, 2015, 19:245-256.
[25] Melton T. G., Vatsala A. S., Generalzed quasilinearization and higher order of convergence for first order initial value problems, Dynamic Systems and Applications, 2006, 15:375-394.
[26] Mohapatra R. A., Vajravelu K., Generalzed quasilinearization method and rapid convergence for first order initial value problems, Journal of Mathematical Analysis and Applications, 1997, 207:206-219.
[27] Papaghiuc N., Equations différentielles linéaires dans les espaces de Fréchet, Rev. Roumaine Math. Pures Appl., 1980, 25:83-88.
[28] Phu N. D., Quang L. T., Hoa N. V., On the existence of extremal solutions for set differential equations, Journal of Advanced Research in Dynamical and Control Systems, 2012, 4(2):18-28.
[29] Schaeffer H. H., Topological Vector Spaces, Springer-Verlag, Berlin, 1980.
[30] Tise I., Set integral equations in metric spaces, Mathematica Moravica, 2009, 13(1):95-102.
[31] Vasundhara Devi J., Existence and uniqueness of solutions for set differential equations involving causal operators with memory, Eur. J. Pure Appl. Math., 2010, 3:737-747.
[32] Vasundhara Devi J., Vatsala A. S., Monotone iterative technique for impulsive set differential equations, Nonlinear Studies, 2004, 11(4):639-658.
[33] Wang P., Xing Zh., Convergence of initial value problem for set differential equations in Fréchet space (in Chinese), Journal of Natural Science of Heilongjiang University, 2018, 35(5):16-23.

[1]Li Xin CHENG, Qing Jin CHENG, Kang Kang XU, Wen ZHANG, Zhe Ming ZHENG. A Bishop-Phelps-Bollobás Theorem for Asplund Operators[J]. Acta Mathematica Sinica, English Series, 2020, 36(7): 765-782.
[2]滕岩梅;王景春. 某种局部凸空间上的Bishop-Phelps定理[J]. Acta Mathematica Sinica, English Series, 2005, 48(4): 781-784.
[3]丘京辉;张建平;黄仁彬. Lax定理与连续左逆的存在性[J]. Acta Mathematica Sinica, English Series, 2002, 45(4): 683-692.
[4]肖体俊;梁进. Fréchet空间中的二阶线性微分方程Cauchy问题的适定性[J]. Acta Mathematica Sinica, English Series, 1992, 35(3): 354-363.
[5]肖尔健. Yoneda 范畴与线性拓扑空间[J]. Acta Mathematica Sinica, English Series, 1980, 23(6): 862-869.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23760
相关话题/空间 序列 数学 河北大学 数学与信息科学学院