| 摘要本文讨论一类Fréchet空间F上的非线性集值微分方程初值问题解的收敛性.基于Fréchet空间F上所有紧致凸子集构成的空间Kc(F)可视为半线性度量空间Kc(Ei)的投影极限和投影极限的性质,通过引入集值函数的Fréchet偏导数以及集值函数的超凸和超凹性定义,应用比较原理和拟线性方法,对所构造的单调迭代序列进行分析,得到了在Kc(F)空间上集值微分方程初值问题的迭代解序列一致且高阶收敛于方程唯一解的判别准则.所得结果发展了Fréchet空间上的微分方程理论. 
 | |  | 服务 |  |  |  |  | 加入引用管理器 |            |  | E-mail Alert |  |  | RSS |  | 收稿日期: 2020-01-20 |  |  |  | 基金资助:国家自然科学基金资助项目(11771115,11271106) 
 |  | 作者简介: 王培光,E-mail:pgwang@hbu.edu.cn;邢珍钰,E-mail:smaths2@hbu.edu.cn;吴曦冉,E-mail:xrwu2017@163.com | 
 
 
   | [1] Abbas U., Lupulescu V., Set functional differential equations, Commun. Appl. Nonlinear Anal., 2011, 18:97-110. [2] Ahmad B., Sivasundaram S., The monotone iterative technique for impulsive hybrid set valued integrodifferential equations, Nonlinear Analysis, 2006, 65:2260-2276.
 [3] Bakowska A., Gabor G., Topological structure of solution sets to differential problems in Fréchet spaces, Annales Polonici Mathematici, 2009, 95(1):17-36.
 [4] Dalila A. L., Wafiya B., A delay second-order set-valued differential equation with Hukuhara derivatives, Numerical Functional Analysis and Optimization, 2015, 36:704-729.
 [5] Deiming K., Ordinary Differential Equations in Banach Spaces, Springer, Berlin, 1977.
 [6] Deo S. G., Drici Z., Method of generalized quasilinearization in abstract cones, Nonlinear Studies, 1998, 5(1):25-33.
 [7] Dhaigude D. B., Naidu Ch. A., Monotone iterative technique for periodic boundary value problem of set differential equations involving causal operators, Dynamics of Continuous, Discrete and Impulsive Systems Series A:Mathematical Analysis, 2017, 24:133-146.
 [8] Djebali S., Górniewicz L., Ouahab A., Topological structure of solution sets for impulsive differential inclusions in Fréchet spaces, Nonlinear Analysis:TMA, 2011, 74(6):2141-2169.
 [9] Galanis G. N., On a type of linear differential equations in Fréchet spaces, Ann. Scuola Norm. Sup. Pisa CI. Sci., 1997, 24(3):501-510.
 [10] Galanis G. N., Bhaskar T. G., Lakshmikantham V., Set differential equations in Fréchet spaces, Journal of Applied Analysis., 2008, 14(1):103-113.
 [11] Galanis G. N., Bhaskar T. G., Lakshmikantham V., et al., Set valued functions in Fréchet spaces:continuity, Hukuhara differentiability and applications to set differential equations, Nonlinear Anal., 2005, 61(4):559-575.
 [12] Girton W. T., Set-valued differential equations on time scales, Florida:Ph.D. Thesis, Florida Institute of Technology, 2005.
 [13] Hong S., Peng Y., Almost periodicity of set-valued functions and set dynamic equations on time scales, Information Sciences, 2016, 330:157-174.
 [14] Hukuhara M., Integration of measurable maps with compact, convex set values, Funkcial. Ekvac., 1967, 10:205-223.
 [15] Jiang J., Li C., Chen H., Existence of solutions for set differential equations involving causal operator with memory in Banach space, J. Appl. Math. Comput., 2013, 41:183-196.
 [16] Kisielewicz M., Multivalued differential equations in separable Banach spaces, J. Optim. Theory Appl., 1982, 37:231-249.
 [17] Ladde G. S., Lakshmikantham V., Vatsala A. S., Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman Publishing, London, 1985.
 [18] Lakshmikantham V., Vatsala A. S., Generalized Quasilinearization for Nonlinear Problems, Dordrecht:Kluwer Academic Publishers, 1998.
 [19] Lakshmikantham V., Bhaskar T. G., Vasundhara Devi J., Theory of Set Differential Equations in a Metric Space, Cambridge Scientific Publishers Ltd., Cottenham, 2006.
 [20] Lupulescu V., Hukuhara differentiability of interval-valued functions and interval differential equations on time scales, Information Sciences, 2013, 248:50-67.
 [21] Lupulescu V., Successive approximations to solutions of set differential equations in Banach spaces, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal., 2008, 15:391-401.
 [22] Malinowski M. T., On set differential equations in Banach spaces-a second type Hukuhara differentiability approach, Appl. Math. Comput., 2012, 219:289-305.
 [23] Malinowski M. T., Michta M., Stochastic set differential equations, Nonlinear Analysis, 2010, 72:1247-1256.
 [24] McRae F. A., Vasundhara Devi J., Drici Z., Existence result for periodic boundary value problem of set differential equations using monotone iterative technique, Communications in Applied Analysis, 2015, 19:245-256.
 [25] Melton T. G., Vatsala A. S., Generalzed quasilinearization and higher order of convergence for first order initial value problems, Dynamic Systems and Applications, 2006, 15:375-394.
 [26] Mohapatra R. A., Vajravelu K., Generalzed quasilinearization method and rapid convergence for first order initial value problems, Journal of Mathematical Analysis and Applications, 1997, 207:206-219.
 [27] Papaghiuc N., Equations différentielles linéaires dans les espaces de Fréchet, Rev. Roumaine Math. Pures Appl., 1980, 25:83-88.
 [28] Phu N. D., Quang L. T., Hoa N. V., On the existence of extremal solutions for set differential equations, Journal of Advanced Research in Dynamical and Control Systems, 2012, 4(2):18-28.
 [29] Schaeffer H. H., Topological Vector Spaces, Springer-Verlag, Berlin, 1980.
 [30] Tise I., Set integral equations in metric spaces, Mathematica Moravica, 2009, 13(1):95-102.
 [31] Vasundhara Devi J., Existence and uniqueness of solutions for set differential equations involving causal operators with memory, Eur. J. Pure Appl. Math., 2010, 3:737-747.
 [32] Vasundhara Devi J., Vatsala A. S., Monotone iterative technique for impulsive set differential equations, Nonlinear Studies, 2004, 11(4):639-658.
 [33] Wang P., Xing Zh., Convergence of initial value problem for set differential equations in Fréchet space (in Chinese), Journal of Natural Science of Heilongjiang University, 2018, 35(5):16-23.
 
 |  
 | | [1] | Li Xin CHENG, Qing Jin CHENG, Kang Kang XU, Wen ZHANG, Zhe Ming ZHENG. A Bishop-Phelps-Bollobás Theorem for Asplund Operators[J]. Acta Mathematica Sinica, English Series, 2020, 36(7): 765-782. |  | [2] | 滕岩梅;王景春. 某种局部凸空间上的Bishop-Phelps定理[J]. Acta Mathematica Sinica, English Series, 2005, 48(4): 781-784. |  | [3] | 丘京辉;张建平;黄仁彬. Lax定理与连续左逆的存在性[J]. Acta Mathematica Sinica, English Series, 2002, 45(4): 683-692. |  | [4] | 肖体俊;梁进. Fréchet空间中的二阶线性微分方程Cauchy问题的适定性[J]. Acta Mathematica Sinica, English Series, 1992, 35(3): 354-363. |  | [5] | 肖尔健. Yoneda 范畴与线性拓扑空间[J]. Acta Mathematica Sinica, English Series, 1980, 23(6): 862-869. | 
 | 
 
 
 PDF全文下载地址:
 
 http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23760
 
 一个实现包含圈C3,...,Cl可图序列问题的渐近解李光明,尹建华海南大学理学院海口570228AsymptoticSolutiontoaProblemaboutGraphicSequenceswithaRealizationContainingCyclesC3,...,ClGuangMingLI, ...中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间中正则非退化异宿环的Lipschitz扰动陈员龙,骆世广广东金融学院金融数学与统计学院广州510521TheLipschitzPerturbationsofRegularNondegenrateHeteroclinicCyclesinBanachSpacesYuanLongCHEN, ...中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27半序MengerPM-空间中广义弱压缩映射的最佳逼近点定理吴照奇1,朱传喜1,袁成桂21.南昌大学理学院数学系南昌330031;2.英国斯旺西大学数学系斯旺西SA28PPBestProximityPointTheoremsforGeneralizedWeakContractiveMappingsin ...中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27完备度量空间中的混沌判定吴小英,陈员龙,王芬广东金融学院金融数学与统计学院广州510521ChaoticCriteriainCompleteMetricSpacesXiaoYingWU,YuanLong,CHENFenWANGSchoolofFinancialMathematicsandStatis ...中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27空间几何常数与集值非扩张映射的不动点左占飞重庆三峡学院数学与统计学院重庆404100SomeGeometricConstantsandFixedPointsforMultivaluedNonexpansiveMappingsZhanFeiZUODepartmentofMathematicsandSt ...中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间上p-fusion框架的若干等价描述林丽琼1,张云南21.福州大学数学与计算机科学学院福州350108;2.福建师范大学数学与信息学院福州350108SomeEquivalentDescriptionsofp-fusionFramesonBanachSpacesLiQiongLIN1 ...中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27加权变指标Herz-Morrey空间上的双线性Hardy算子的交换子王盛荣,徐景实桂林电子科技大学数学与计算科学学院桂林541004CommutatorsofBilinearHardyOperatorsonWeightedHerzMorreySpaceswithVariableExpo ...中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27加权Bloch空间上复合算子的线性组合张利,楚秀娇南阳师范学院南阳473061LinearCombinationsofCompositionOperatorsonWeightedBlochTypeSpaceLiZHANG,XiuJiaoCHUNanyangNormalUniversity,Nanya ...中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27bp(2)空间中的等距映射王瑞东,王普天津理工大学理学院天津300384TheIsometryonbp(2)SpaceRuiDongWANG,PuWANGDepartmentofMathematics,TianjinUniversityofTechnology,Tianjin300384,P.R.C ...中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27改进的Tsirelson空间TM上的Wigner定理熊晓蕾,谭冬妮天津理工大学数学系天津300384Wigner'sTheoremontheModifiedTsirelsonSpaceTMXiaoLeiXIONG,DongNiTANDepartmentofMathematics,TianjinUni ...中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
 |