删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Banach空间上p-fusion框架的若干等价描述

本站小编 Free考研考试/2021-12-27

Banach空间上p-fusion框架的若干等价描述 林丽琼1, 张云南21. 福州大学数学与计算机科学学院 福州 350108;
2. 福建师范大学数学与信息学院 福州 350108 Some Equivalent Descriptions of p-fusion Frames on Banach Spaces Li Qiong LIN1, Yun Nan ZHANG21. College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, P. R. China;
2. College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350108, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(409 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文说明Banach空间上p-fusion框架和p-框架有紧密联系.应用分析算子和合成算子给出p-fusion Bessel序列、p-fusion框架和q-fusion Riesz基的等价描述.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-02-11
MR (2010):O177.2
基金资助:国家自然科学基金资助项目(11971108)
引用本文:
林丽琼, 张云南. Banach空间上p-fusion框架的若干等价描述[J]. 数学学报, 2021, 64(2): 301-310. Li Qiong LIN, Yun Nan ZHANG. Some Equivalent Descriptions of p-fusion Frames on Banach Spaces. Acta Mathematica Sinica, Chinese Series, 2021, 64(2): 301-310.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I2/301


[1] Aldroubi A., Sun Q., Tang W., p-frames and shift invariant subspaces of Lp, J. Fourier Anal. Appl., 2001, 7(1):1-22.
[2] Bachoc C., Ehler M., Tight p-fusion frames, Appl. Comput. Harmon. Anal., 2013, 35:1-15.
[3] Casazza P. G., The art of frame theory, Taiwanese J. Math., 2000, 4(2):129-201.
[4] Casazza P. G., Christensen O., Stoeva D. T., Frame expansions in separable Banach spaces, J. Math. Anal. Appl., 2005, 307:710-723.
[5] Casazza P. G., Han D., Larson D. R., Frames for Banach spaces, Contemp. Math., 1999, 247:149-182.
[6] Cassaza P. G., Kutyniok G., Frames of subspaces, Contemp. Math., 2004, 345:87-113.
[7] Casazza P. G., Kutyniok G., Li S., Fusion frames and distributed processing, Appl. Comput. Harmon. Anal., 2008, 25:114-132.
[8] Casazza P. G., Tremain J. C., The Kadison-Singer problem in mathematics and engineering, Proc. Natl. Acad. Sci. USA, 2006, 103(7):2032-2039.
[9] Christensen O., An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2003.
[10] Christensen O., Stoeva D. T., p-frames in separable Banach spaces, Adv. Comput. Math., 2003, 18:117-126.
[11] Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansions, J. Math. Phys., 1986, 27:1271-1283.
[12] Duffin R. G., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 1952, 72:341-366.
[13] Fornasier M., Quasi-orthogonal decompositions of structured frames, J. Math. Anal. Appl., 2004, 289:180199.
[14] Grochenig K., Describing functions:atomic decompositions versus frames, Monatsh. Math., 1991, 112(1):1-42.
[15] Han D., Larson D. R., Frames, bases and group representations, Mem. Amer. Math. Soc., 2000, 147.
[16] Han D., Larson D. R., Liu B., et al., Operator-valued measures, dilations, and the theory of frames, Mem. Amer. Math. Soc., 2014, 229.
[17] Liu B., Liu R., Zheng B. T., Parseval p-frames and the Feichtinger conjecture, J. Math. Anal. Appl., 2015, 424:248-259.

[1]王紫, 王玉文. Banach空间中基于Neumann引理的拟线性广义逆扰动定理[J]. 数学学报, 2018, 61(5): 751-760.
[2]蔡钢. 均衡问题、变分不等式问题和不动点问题的强收敛定理[J]. 数学学报, 2017, 60(4): 669-680.
[3]侯绳照, 罗晴, 卫淑云. 复平面上解析Banach空间的拟不变子空间[J]. 数学学报, 2017, 60(1): 97-112.
[4]刘洁, 赵秀兰. Banach空间中带误差修改的不动点迭代逼近[J]. 数学学报, 2016, 59(6): 767-774.
[5]刘春, 刘立山. 非扩张映射具有误差修改Ishikawa迭代算法的强收敛[J]. 数学学报, 2016, 59(4): 545-560.
[6]唐国吉, 汪星. Banach空间上变分不等式的一个超梯度方法[J]. 数学学报, 2016, 59(2): 187-198.
[7]王利广, 刘博. 一类源自可加、二次、三次和四次映射的泛函方程的模糊稳定性[J]. Acta Mathematica Sinica, English Series, 2012, 55(5): 841-854.
[8]张世芳, 钟怀杰, 武俊德. 2 × 2-上三角算子矩阵谱的Fredholm扰动[J]. Acta Mathematica Sinica, English Series, 2011, 54(4): 581-590.
[9]张云南, 林丽琼. 猜测“存在Banach空间X使得K0(B(X))=Z2”的一个注记[J]. Acta Mathematica Sinica, English Series, 2011, 54(2): 313-320.
[10]张世芳, 钟怀杰, 武俊德. 上三角算子矩阵的谱[J]. Acta Mathematica Sinica, English Series, 2011, 54(1): 41-60.
[11]刘展, 朱传喜. 半序空间中一类算子方程的可解性及应用[J]. Acta Mathematica Sinica, English Series, 2009, 52(6): 1181-1188.
[12]江樵芬;钟怀杰;. 半正则算子与广义Kato分解[J]. Acta Mathematica Sinica, English Series, 2009, (04): 69-78.
[13]王亚琴;. φ-单调型集值变分包含解的Ishikawa迭代逼近[J]. Acta Mathematica Sinica, English Series, 2008, 51(3): 481-486.
[14]苏维钢;钟怀杰;. 一类不可分解Banach空间上线性算子的谱性质[J]. Acta Mathematica Sinica, English Series, 2007, 50(4): 781-788.
[15]张石生;. Banach空间中非扩张映象的黏性逼近方法[J]. Acta Mathematica Sinica, English Series, 2007, 50(3): 485-492.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23720
相关话题/空间 数学 信息学院 福建师范大学 科学学院