删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

加权变指标Herz-Morrey空间上的双线性Hardy算子的交换子

本站小编 Free考研考试/2021-12-27

加权变指标Herz-Morrey空间上的双线性Hardy算子的交换子 王盛荣, 徐景实桂林电子科技大学数学与计算科学学院 桂林 541004 Commutators of Bilinear Hardy Operators on Weighted Herz–Morrey Spaces with Variable Exponents Sheng Rong WANG, Jing Shi XUSchool of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(512 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文利用权范数给出BMO函数的一个新刻画.作为此刻画的一个应用,获得了双线性Hardy算子和BMO函数生成的交换子在加权变指标Herz-Morrey乘积空间上的有界性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-12-06
MR (2010):O177.2
基金资助:国家自然科学基金资助项目(11761026);海南省自然科学基金资助项目(2018CXTD338)
通讯作者:徐景实E-mail: jingshixu@126.com
作者简介: 王盛荣,E-mail:67775874@qq.com
引用本文:
王盛荣, 徐景实. 加权变指标Herz-Morrey空间上的双线性Hardy算子的交换子[J]. 数学学报, 2021, 64(1): 123-138. Sheng Rong WANG, Jing Shi XU. Commutators of Bilinear Hardy Operators on Weighted Herz–Morrey Spaces with Variable Exponents. Acta Mathematica Sinica, Chinese Series, 2021, 64(1): 123-138.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I1/123


[1] Almeida A., Drihem D., Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl., 2012, 394(2):781-795.
[2] Almeida A., Hasanov J., Samko S., Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J., 2008, 15(2):195-208.
[3] Almeida A., Hästö P., Besov spaces with variable smoothness and integrability, J. Funct. Anal., 2010, 258(5):1628-1655.
[4] Christ M., Grafakos L., Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc., 1995, 123(6):1687-1693.
[5] Cruz-Uribe D., Diening L., Fiorenza A., A new proof of the boundedness of maximal operators on variable Lebesgue spaces, Boll. Unione Mat. Ital., 2009, 2(1):151-173.
[6] Cruz-Uribe D., Fiorenza A., Variable Lebesgue Spaces, Birkhauser, Basel, 2013.
[7] Cruz-Uribe D., Fiorenza A., Martell J. M., et al., The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 2006, 31(1):239-264.
[8] Cruz-Uribe D., Fiorenza A., Neugebauer C. J., Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 2012, 394(2):744-760.
[9] Cruz-Uribe D., Wang L. A. D., Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc., 2017, 369(2):1205-1235.
[10] Diening L., Maximal function on generalized Lebesgue spaces Lp(·), Math. Inequal. Appl., 2004, 7(2):245-253.
[11] Diening L., Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math., 2005, 129(8):657-700.
[12] Diening L., Harjulehto P., Hästö P., et al., Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011.
[13] Diening L., Harjulehto P., Hästö P., et al., Maximal functions in variable exponent spaces:limiting cases of the exponent, Ann. Acad. Sci. Fenn. Math., 2009, 34(1):503-522.
[14] Diening L., Hästö P., Roudenko S., Function spaces of variable smoothness and integrability, J. Funct. Anal., 2009, 256(6):1731-1768.
[15] Diening L., Samko S., Hardy inequality in variable exponent Lebesgue spaces, Fract. Calc. Appl. Anal., 2007, 167(10):2479-2486.
[16] Dong B., Xu J., New Herz type Besov and Triebel-Lizorkin spaces with variable exponents, J. Funct. Spaces Appl., 2012, 2012, Article ID 384593, 27 pp.
[17] Drihem D., Some characterizations of variable Besov-type spaces, Ann. Funct. Anal., 2015, 6(4):255-288.
[18] Drihem D., Some properties of variable Besov-type spaces, Funct. Approx. Comment. Math., 2015, 52(2):193-221.
[19] Drihem D., Heraiz R., Herz-type Besov spaces of variable smoothness and integrability, Kodai Math. J., 2017, 40(1):31-57.
[20] Faris W., Week Lebesgue spaces and quantum mechanical binding, Duke Math. J., 1967, 43(2):365-373.
[21] Grafakos L., Modern Fourier Analysis, Springer, New York, 2014.
[22] Gurka P., Harjulehto P., Nekvinda A., Bessel potential spaces with variable exponent, Math. Inequal. Appl., 2007, 10(3):661-676.
[23] Hardy G. H., Note on a theorem of Hilbert, Math Z., 1920, 6(3):314-317.
[24] Harjulehto P., Hasto P., Koskenoja M., Hardy's inequality in a variable exponent Sobolev space, Georgian Math. J., 2005, 12(3):431-442.
[25] Huang A., Xu J., Multilinear singular integral and commutators in variable exponent Lebesgue space, Appl. Math. J. Chinese Univ. Ser. B, 2010, 25(1):69-77.
[26] Izuki M., Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 2010, 59(2):199-213.
[27] Izuki M., Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 2009, 13(10):243-253.
[28] Izuki M., Fractional integrals on Herz-Morrey space with variable exponents, Hiroshima Math. J., 2010, 40(3):343-355.
[29] Izuki M., Noi T., Boundedness of fractional integrals on weighted Herz spaces with variable exponent, J. Inequal. Appl., 2016, 2016(1):199.
[30] Izuki M., Noi T., An intrinsic square function on weighted Herz spaces with variable exponent, J. Math. Inequal., 2016, 11(3):799-816.
[31] Izuki M., Noi T., Two weighted Herz spaces with variable exponents, Bull. Malays. Math. Sci. Soc., 2020, 43:169-200.
[32] Ková?ik O., Rákosník J., On space Lp(x) and Wk,p(x), Czechoslovak Math. J., 1991, 41(4):592-618.
[33] Li X., Yang D., Boundedness of some sublinear operators on Herz spaces, Illinois J. Math., 1996, 40(3):484-501.
[34] Lu S., Yang D., Hu G., Herz Type spaces and Their Applications, Science Press, Beijing, 2008.
[35] Lu Y., Zhu Y., Boundedness of multilinear Calderón-Zygmund singular operators on Morrey-Herz space with variable exponent, Acta Math. Sin. Engl. Ser., 2014, 30(7):1180-1194.
[36] Muckenhoupt B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 1972, 165:207-226.
[37] Nakai E., Sawano Y., Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., 2012, 262(9):3665-3748.
[38] Nekvinda A., Hardy-Littlewood maximal operator on Lp(x)(Rn), Math. Inequal. Appl., 2004, 7(2):255-266.
[39] Samko S., Hardy inequality in the generalized Lebesgue spaces, Fract. Calc. Appl. Anal., 2003, 6(4):355-362.
[40] Sawano Y., Theory of Besov Spaces, Springer, Singapore, 2018.
[41] Shu L., Wang M., Qu M., Commutators of Hardy type operators on Herz spaces with variable exponents, Acta Math. Sinica, Chinese Series, 2015, 58(1):29-40.
[42] Wu J., Boundedness of multilinear commutators of fractional Hardy operators, Acta Math. Sci. Ser. A Chin. Ed., 2011, 31(4):1055-1062.
[43] Wu J., Boundedness for fractional Hardy-type operator on Herz-Morrey spaces with variable exponent, Bull. Korean Math. Soc., 2014, 51(2):423-435.
[44] Wu J., Liu Q., λ-central BMO estimates for higher order commutators of Hardy operators, Commun. Math. Res., 2014, 30(3):201-206.
[45] Wu J., Zhang P., Boundedness of multilinear Hardy type operators on the product of Herz-Morrey spaces with variable exponent, Appl. Math. J. Chinese Univ. Ser. A, 2013, 28(2):154-164.
[46] Zhang P., Wu J., Boundedness of commutators of fractional Hardy operators on Herz-Morrey spaces with variable exponent (in Chinese), Adv. Math., 2014, 43(4):581-589.
[47] Wu J., Zhao W., Boundedness for fractional Hardy-type operator on variable exponent Herz-Morrey spaces, Kyoto J. Math., 2016, 56(4):831-845.
[48] Wu S., Yang D., Yuan W., et al., Variable 2-microlocal Besov-Triebel-Lizorkin-type spaces, Acta Math. Sin. Engl. Ser., 2018, 34(4):699-748.
[49] Xu J., Variable Besov spaces and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fen. Math., 2008, 33:511-522.
[50] Xu J., Yang X., Variable exponent Herz type Besov and Triebel-Lizorkin spaces, Georgian Math. J., 2018, 25(1):135-148.
[51] Yang D., Zhuo C., Yuan W., Triebel-Lizorkin type spaces with variable exponents, Banach J. Math. Anal., 2015, 9(4):146-202.
[52] Yang D., Zhuo C., Yuan W., Besov-type spaces with variable smoothness and integrability, J. Funct. Anal., 2015, 269(6):1840-1898.
[53] Zhuo C., Chang D., Yang D., et al., Characterizations of variable Triebel-Lizorkin-type spaces via ball averages, J. Nonlinear Convex Anal., 2018, 19(1):19-40.

[1]李亚涛. Sobolev空间中非电阻MHD方程局部适定性[J]. 数学学报, 2020, 63(4): 335-348.
[2]郭庆栋, 周疆. 一些算子的交换子在广义Morrey空间上的紧性[J]. 数学学报, 2020, 63(4): 367-380.
[3]杨沿奇, 陶双平. θ型C-Z算子在加权变指数Morrey空间上的有界性[J]. 数学学报, 2019, 62(3): 503-514.
[4]陶双平, 逯光辉. Morrey空间上Marcinkiewicz积分与R[J]. 数学学报, 2019, 62(2): 269-278.
[5]王定怀, 刘宗光, 周疆, 滕志东. 变指标中心BMO空间[J]. 数学学报, 2018, 61(4): 641-650.
[6]王定怀, 周疆. 一类新型BMO空间[J]. 数学学报, 2017, 60(5): 833-846.
[7]张蕾, 石少广, 郑庆玉. 含参数加权极大Lebesgue空间中次线性算子的有界性质[J]. 数学学报, 2017, 60(3): 521-530.
[8]王玮, 侯晋川. 自伴标准算子代数上强保持k-斜交换性映射的刻画[J]. 数学学报, 2017, 60(1): 39-52.
[9]毛素珍, 孙丽静, 伍火熊. 双线性Fourier乘子交换子的有界性与紧性[J]. 数学学报, 2016, 59(3): 317-334.
[10]李立莉. 单群2G2(32n+1)的拟刻画[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 359-364.
[11]檀健, 刘宗光. 齐次分数次积分算子在变指标函数空间上的有界性[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 309-320.
[12]束立生, 王敏, 瞿萌. 变指数Herz空间上的Hardy型算子的交换子[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 29-40.
[13]高贵连, 樊云. 多线性Hausdorff算子的Sharp估计[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 153-160.
[14]陈艳萍, 韩寒. Hardy-Littlewood极大算子的交换子的尖锐加权模不等式[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 445-452.
[15]陶双平, 任转喜. n维Hausdorff交换子的加权估计[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 351-364.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23693
相关话题/空间 数学 交换 指标 科学学院