删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

空间几何常数与集值非扩张映射的不动点

本站小编 Free考研考试/2021-12-27

空间几何常数与集值非扩张映射的不动点 左占飞重庆三峡学院数学与统计学院 重庆 404100 Some Geometric Constants and Fixed Points for Multivalued Nonexpansive Mappings Zhan Fei ZUODepartment of Mathematics and Statistics, Chongqing Three Gorges University, Wanzhou 404100, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(422 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文利用凸刻画系数和正规结构系数,詹姆斯型常数和García-Falset系数之间的关系式,得到了空间上集值非扩张映射存在不动点的一些充分条件,这些结论不仅改进了一些文献中的结果,而且也对一些公开问题给出了解答.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-03-09
MR (2010):O177.2
基金资助:重庆市自然科学基金基础研究与前沿探索专项面上项目(cstc2019jcyj-msxmX0289)及重庆市科委基础研究与前沿探索(cstc2018jcyjAX0773);重庆三峡学院人才引进项目
引用本文:
左占飞. 空间几何常数与集值非扩张映射的不动点[J]. 数学学报, 2021, 64(2): 281-288. Zhan Fei ZUO. Some Geometric Constants and Fixed Points for Multivalued Nonexpansive Mappings. Acta Mathematica Sinica, Chinese Series, 2021, 64(2): 281-288.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I2/281


[1] Bynum W., A class of spaces lacking normal structure, Compos. Math., 1972, 25:233-236.
[2] Bynum W., Normal structure coefficients for Banach spaces, J. Math. Pacific, 1980, 86(2):427-436.
[3] Clarkson J., Uniformly convex spaces, Trans. Amer. Math. Soc., 1936, 40:394-414.
[4] Clarkson J., The von Neumann-Jordan constant of Lebesgue spaces, Ann. of Math., 1937, 38:114-115.
[5] Dhompongsa S., Generalized James constant and fixed point theorems for multivalued nonexpansive mappings, Nonlinear Analysis and Convex Analysis, 2008, 1611:150-156.
[6] Dhompongsa S., Kaewcharoen A., Kaewkhao A., The Domínguez-Lorenzo condition and multivalued nonexpansive mappings, Nonlinear Anal., 2006, 64:958-970.
[7] Dinarvand M., Hölder's means and fixed Points for multivalued nonexpansive mappings, Filomat., 2018, 19:6531-6547.
[8] Dinarvand M., Banach space properties sufficient for the Domínguez-Lorenzo condition, U.P.B. Sci. Bull., Series A, 2018, 80:211-224.
[9] Domínguez Benavides T., Gavira B., Does Kirk's theorem hold for multivalued nonexpansive mappings? Fixed Point Theory and Applications, 2010, 2010, Article ID 546761, 20 pages.
[10] García-Falset J., Stability and fixed points for nonexpansive mapping, Houston J. Math., 1994, 20:495-505.
[11] Hernández Trujillo C., Lorenzo Ramírez P., Some Banach space and the (DL)-condition, J. Nonlinear Convex Anal., 2016, 17:2305-2316.
[12] Jiménez-Melado A., Llorens-Fuster E., Saejung S., The von Neumann-Jordan constant, weak orthogonality and normal structure in Banach spaces, Proc. Amer. Math. Soc., 2006, 134(2):355-364.
[13] Lin P., Tan K., Xu H., Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings, Nonlinear Anal., 1995, 24:929-946.
[14] Llorens-Fuster E., Mazcuñán-Navarr E. M., Reich S., The Ptolemy and Zbǎganu constants of normed spaces, Nonlinear Analysis, 2010, 72:3984-3993.
[15] Nadler Jr S., Multivalued contraction mappings, Pacific J. Math., 1969, 30:475-488.
[16] Prus S., On Bynum's fixed point theorem, Atti. Sem. Mat. Fis. Univ. Modena, 1990, 38:535-545.
[17] Takahashi Y., Some geometric constants of Banach spaces-a unified approach, In:Banach and Function Spaces II, Proc. International Symposium (ISBFS 2006) held in Kitakyushu (Sept. 14-17, 2006), Edited by Mikio Kato and Lech Maligranda, Yokohama Publ., Yokohama, 2008, 191-220.
[18] Wang Y., Some properties of James type constant and von Neumann-Jordan type constant, Dissertation Math. Master's Thesis, He'nan Normal University, Xingxiang, 2011.
[19] Zuo Z., On the Ptolemy constant of some concrete Banach spaces, Mathematical Inequalities and Applications, 2018, 21:945-956.
[20] Zuo Z., On the Ptolemy constant of Lorentz sequence spaces and their duals, ScienceAsia, 2018, 44:340-345.
[21] Zuo Z., Tang C., On James and Jordan-von Neumann type constants and the normal structure in Banach spaces, Topol. Methods Nonlinear Anal., 2017, 49:615-623.

[1]蔡钢. Hilbert空间上新的变分不等式问题和不动点问题的粘性迭代算法[J]. 数学学报, 2019, 62(5): 765-776.
[2]司马傲蕾, 贺飞, 路宁. 类拟b-距离空间中几类循环压缩映射不动点定理[J]. 数学学报, 2019, 62(3): 427-440.
[3]万育基, 余志先, 孟艳玲. 状态依赖时滞非局部扩散方程的波前解[J]. 数学学报, 2019, 62(3): 479-496.
[4]张丽娟, 刘英. 无限族demi压缩映射与平衡问题的收敛定理[J]. 数学学报, 2017, 60(5): 721-730.
[5]蔡钢. 均衡问题、变分不等式问题和不动点问题的强收敛定理[J]. 数学学报, 2017, 60(4): 669-680.
[6]刘洁, 赵秀兰. Banach空间中带误差修改的不动点迭代逼近[J]. 数学学报, 2016, 59(6): 767-774.
[7]李娟, 朱传喜. 半序度量空间中公共二元随机重合点定理及其应用[J]. 数学学报, 2016, 59(3): 343-356.
[8]张克梅. 广义e-ω-凹算子的不动点及其应用[J]. 数学学报, 2016, 59(1): 107-116.
[9]张丽娟, 佟慧. 不动点集和零点集公共元的强弱收敛性[J]. Acta Mathematica Sinica, English Series, 2015, 58(4): 601-612.
[10]苏华, 刘立山. 变号(k,n-k)共轭边值问题解的存在问题[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 261-270.
[11]朴勇杰. 锥度量空间上混合型膨胀映射族的唯一公共不动点[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1041-1046.
[12]赵增勤, 毛锦秀. 序Banach空间中某些二元算子的不动点及其应用[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 931-938.
[13]张克玉, 王建国, 徐家发. 测度链上p-Laplacian算子的Sturm—Liouville边值问题的正解[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 993-1000.
[14]丁友征, 徐家发, 韦忠礼. 一个带有脉冲效应的高阶积分边值问题的正解[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 527-536.
[15]刘建辉, 朱传喜, 吴照奇. 半序概率度量空间中压缩条件下的三元重合点定理[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 517-526.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23718
相关话题/空间 数学 公共 基础 重庆三峡学院