删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

完备度量空间中的混沌判定

本站小编 Free考研考试/2021-12-27

完备度量空间中的混沌判定 吴小英, 陈员龙, 王芬广东金融学院金融数学与统计学院 广州 510521 Chaotic Criteria in Complete Metric Spaces Xiao Ying WU, Yuan Long, CHEN Fen WANGSchool of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(442 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究完备度量空间上的离散动力系统的混沌标准,证明了如果完备度量空间X上的连续映射f具有正则非退化返回排斥子或连接不动点的正则非退化异宿环,则存在f的不变闭子集Λ,使得f限制在此不变闭子集上的子系统与两个符号的符号动力系统拓扑共轭,从而获得具有这类结构的连续映射f具有Devaney混沌、分布混沌、正拓扑熵及ω-混沌,此结果改进了已有的相关结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-02-26
MR (2010):O19
基金资助:国家自然科学基金(11671410,61907010);广东省自然科学基金(2017A030313037,2018A0303130120)及广东省普通高校自然科学重点项目(2019KZDXM036)
通讯作者:陈员龙,E-mail:chernylong@163.comE-mail: chernylong@163.com
引用本文:
吴小英, 陈员龙, 王芬. 完备度量空间中的混沌判定[J]. 数学学报, 2021, 64(2): 225-230. Xiao Ying WU, Yuan Long, CHEN Fen WANG. Chaotic Criteria in Complete Metric Spaces. Acta Mathematica Sinica, Chinese Series, 2021, 64(2): 225-230.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I2/225


[1] Banks J., Brooks J., Cairns G., et al., On Devaney's definition of chaos, Amer. Math. Monthly, 1992, 99:332-334.
[2] Chen Y., Huang T., Huang Y., Complex dynamics of a delayed discrete neural network of two nonidentical neurons, Chaos, 2014, 24:013108.
[3] Chen Y., Huang Y., Li L., The persistence of snap-back repeller under small C1 perturbations in Banach spaces, Internat. J. Bifur. Chaos, 2011, 21(3):703-710.
[4] Chen Y., Huang Y., Zou X., Chaotic invariant sets of a delayed discrete neural network of two non-identical neurons, Sci. China Math., 2013, 56(9):1869-1878.
[5] Chen Y., Li L., Wu X., et al., The structural stability of maps with heteroclinic repellers, Internat. J. Bifur. Chaos, 2020, 30:accepted.
[6] Chen Y., Wu X., The C1 persistence of heteroclinic repellers in Rn, J. Math. Anal. Appl., 2020, 485(2):1-9.
[7] Devaney R., An Introduction to Chaotic Dynamical Systems (Second Edition), Addison-Wesley Publishing Company, Redwood City, 1989.
[8] Huang W., Ye X., Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topol. Appl., 2002, 117:259272.
[9] Li J., Ye X., Recent development of chaos theory in topological dynamics, Acta Math. Sin., 2016, 32(1):83-114.
[10] Li S., ω-chaos and topological entropy, T. Amer. Math. Soc., 1993, 339(1):243-249.
[11] Li T., Yorke J., Period three implies chaos, Amer. Math. Mon., 1975, 82:985-992.
[12] Li Z., Shi Y., Zhang C., Chaos induced by heteroclinic cycles connecting repellers in complete metric spaces, Chaos. Solitons Fractals, 2008, 36:746-761.
[13] Liao G., Fan Q., Minimal subshifts which display Schweizer-Smítal chaos and have zero topological entropy, Science in China, 1998, 41(1):33-38.
[14] Lin W., Chen G., Heteroclinical repellers imply chaos, Internat. J. Bifur. Chaos, 2006, 16:1471-1489.
[15] Lu K., Yang Q., Xu W., Heteroclinic cycles and chaos in a class of 3d three-zone piecewise affine systems, J. Math. Anal. Appl, 2019, 478(1):58-81.
[16] Wu X., Chen Y., Tian J., et al., Chaotic dynamics of discrete multiple-time delayed neural networks of ring architecture evoked by external inputs, Internat. J. Bifur. Chaos, 2016, 26(11):1650179.
[17] Marotto F., Snap-back repellers imply chaos in Rn, J. Math. Anal. Appl., 1978, 63:199-223.
[18] Schweizer B., Smítal J., Measures of chaos and a spectral decomposition of dynamical systems on the interval, T. Am. Math. Soc., 1994, 344(2):737-754.
[19] Shi Y., Chen G., Chaos for discrete dynamical systems in complete metric spaces, Chaos Solitons Fractals, 2004, 22:555-571.
[20] Shi Y., Chen G., Discrete chaos in Banach spaces, Sci. China Math., 2005, 48(2):222-238.
[21] Ye X., Huang W., Shao S., An Introduction to Topological Dynamics (in Chinese), Science Press, Beijing, 2008.
[22] Zou Z., Symbolic Dynamics (in Chinese), Shanghai Science and Technology Press, Shanghai, 1997.

[1]陈员龙, 骆世广. Banach空间中正则非退化异宿环的Lipschitz扰动[J]. 数学学报, 2021, 64(3): 485-492.
[2]张萍萍, 李伟年. 逐段单调函数的高度与拓扑共轭[J]. 数学学报, 2018, 61(2): 243-260.
[3]吕杰熊金城谭枫. 周期吸附系统的分布混沌[J]. Acta Mathematica Sinica, English Series, 2008, 51(6): 1109-111.
[4]王立娟;廖公夫;. 3阶Feigenbaum映射的拓扑共轭性[J]. Acta Mathematica Sinica, English Series, 2006, 49(4): 955-960.
[5]史恩慧;周丽珍. 拓扑群在连续统上的膨胀作用[J]. Acta Mathematica Sinica, English Series, 2003, 46(1): 197-202.
[6]杨润生. 按序列分布混沌与拓扑混合[J]. Acta Mathematica Sinica, English Series, 2002, 45(4): 753-758.
[7]麦结华;王理. 交换环上幂映射的周期轨道分支的对称性[J]. Acta Mathematica Sinica, English Series, 1995, 38(5): -.
[8]张广远. n维动力系统C~r扰动下周期轨的分歧定理[J]. Acta Mathematica Sinica, English Series, 1989, 32(5): 647-658.
[9]张芷芬. 一个紧致非齐性极小集合的例子[J]. Acta Mathematica Sinica, English Series, 1982, 25(3): 354-364.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23712
相关话题/空间 数学 系统 动力 结构