摘要本文研究了带有热效应的非均匀柔性结构方程,并且该热效应符合Coleman-Gurtin定律.利用半群方法,建立了系统的整体适定性.主要结论是该系统的长时间动力行为.本文证明了系统的拟稳定性,整体吸引子的存在性以及整体吸引子具有有限的分形维数.此外,还证明了指数吸引子的存在性. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-08-22 | | 基金资助:国家自然科学基金(11701465,11701012,61761002);宁夏自然科学基金(2020AAC03233)北方民族大学重大专项(ZDZX201901);北方民族大学校级科研项目(2018XYZSX02)
| 通讯作者:李海燕E-mail: lihaiyanmath@163.com | 作者简介: 冯保伟,E-mail:bwfeng@swufe.edu.cn |
[1] Alves M. S., Gamboa P., Gorain G. C., et al., Asymptotic behavior of a flexible structure with Cattaneo type of thermal effect, Indag. Math., 2016, 27:821-834. [2] Araujo R. O., Ma T. F., Long-time behavior of quasilinear viscoelastic equation with past history, J. Differential Equations, 2013, 254:4066-4087. [3] Barbosa A. R. A., Ma T. F., long-time dynamics of an extensible plate equation with thermal memory, J. Math. Anal. Appl., 2014, 416:143-165. [4] Carlson D. E., Linear Thermoelasticity, in:Handbook of Physics, Springer-Verlag, Berlin, 1972. [5] Cavalcanti M. M., Fatori L. H., Ma T. F., Attractors for wave equations with degenerate memory, J. Differential Equations, 2016, 260:56-83. [6] Chueshov I. D., Introduction to the Theory of Infinite Dimensional Dissipative Systems, Acta Scientific Publishing House, Kharkiv, Ukraine, 2002. [7] Chueshov I. D., Dynamics of Quasi-stable Dissipative Systems, Springer, New York, 2015. [8] Chueshov I. D., Lasiecka I., Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, American Mathematical Society, Providence, RI, 2008. [9] Chueshov I. D., Lasiecka I., Von Karman Evolution Equations, Springer-Verlag, Berlin, 2012. [10] Chueshov I. D., Lasiecka I., Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 2006, 15:777-809. [11] Chueshov I. D., Lasiecka I., On global attractors for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity, Comm. Partial Diff. Equa., 2011, 36:67-99. [12] Dafermos C. M., Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 1970, 37:297-308. [13] Fatori H., Jorge Silva M. A., Ma T. F., et al., Long-time behavior of a class of thermoelastic plates with nonlinear strain, J. Differential Equations, 2015, 259:4831-4862. [14] Feng B., Long-time dynamics of a plate equation with memory and time delay, Bull. Braz. Math. Soc. New Series, 2018, 49:395-418. [15] Feng B., Yang X. G., Qin Y., Uniform attractors for a nonautonomous extensible plate equation with a strong damping, Math. Meth. Appl. Sci., 2017, 40:3479-3492. [16] Giorgi C., Grasseli M., Pata V., Well-posedness and longtime behavior of the phase-field model with memory in a history space setting, Q. Appl. Math., 2001, 59:701-736. [17] Giorgi C., Marzocchi A., Pata V., Asymptotic behavior of a semilinear problem in heat conduction with memory, NoDEA:Nonlinear Differ. Equ. Appl., 1998, 5:333-354. [18] Giorgi C., Naso M. G., Pata V., Exponential stability in linear heat conduction with memory:a semigroup approach, Commun. Appl. Anal., 2001, 5:121-133. [19] Gorain G. C., Exponential stabilization of longitudinal vibrations of an inhomogeneous beam, J. Math. Sci., 2014, 198:245-251. [20] Hale J. K., Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., American Mathematical Society, Providence, RI, 1988. [21] Jorge Silva M. A., Ma T. F., Long-time dynamics for a class of Kirchhoff models with memory, J. Math. Phys., 2013, 54, 021505. [22] Liu K., Liu Z., Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping, SIAM J. Control Optim., 1998, 36:1086-1098. [23] Ma T. F., Pelicer M. L., Attractors for weakly damped beam equations with p-Laplacian, Discrete Contin. Dyn. Sys., 2013, Supplement:513-522. [24] Ma T. F., Narciso V., Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 2010, 73:3402-3412. [25] Misra S., Alves M., Gorain G. C., et al., Stability of the vibrations of an inhomogeneous flexible structure with thermal effect, Int. J. Dynam. Control, 2015, 3:354-362. [26] Nandi P. K., Gorain G. C., Kar S., A note on stability of longitudinal vibrations of an inhomogeneous beam, Appl. Math., 2012, 3:19-23. [27] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. [28] Robinson J. C., Infinite-Dimensional Dynamical Systems:An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, England, 2001. [29] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. [30] Yang Z., longtime behavior for a nonlinear wave equation arising in elasto-plastic flow, Math. Methods Appl. Sci., 2009, 32:1082-1104. [31] Yang Z., Finite-dimensional attractors for the Kirchhoff models, J. Math. Phys., 2010, 51, 092703. [32] Yang Z., Global attractor and their Hausdorff dimensions for a class of Kirchhoff models, J. Math. Phys., 2010, 51, 032701.
|
[1] | 张瑞凤, 寇汴闽. 非线性光学中薛定谔型方程的整体吸引子[J]. Acta Mathematica Sinica, English Series, 2012, 55(1): 17-26. | [2] | 赵才地, 周盛凡. 格点系统存在指数吸引子的充分条件及应用[J]. Acta Mathematica Sinica, English Series, 2010, 53(2): 233-242. | [3] | 张瑞凤;郭柏灵;. 一类广义长短波方程组在无界区域上的整体吸引子[J]. Acta Mathematica Sinica, English Series, 2008, 51(4): 647-654. | [4] | 陈光淦;蒲志林;魏赟赟. 无界区域R~1上的KDV型方程的指数吸引子[J]. Acta Mathematica Sinica, English Series, 2004, 47(3): 441-448. | [5] | 高平;戴正德. 非线性应变波耦合组的吸引子的正则性[J]. Acta Mathematica Sinica, English Series, 2003, 46(1): 75-84. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23668
正规结构和带参数的约当-冯诺依曼型常数左占飞重庆三峡学院数学与统计学院万州404100TheNormalStructureandParametrizedJordan-vonNeumanntypeConstantZhanFeiZUODepartmentofMathematicsandStatistic ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Zalcman引理在随机迭代函数族动力系统中的应用黄小杰1,2,刘芝秀11南昌工程学院理学院江西330099;2复旦大学计算机科学技术学院上海200433AnApplicationofZalcmanLemmainDynamicalSystemsofRandomIteratedFunctionFami ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27李代数W(2,2)上的Hom-李代数结构陈海波1,赖丹丹2,刘东21上海立信会计金融学院统计与数学学院上海201620;2湖州师范学院理学院湖州313000TheHom-LieStructureontheLieAlgebraW(2,2)HaiBoCHEN1,DanDanLAI2,DongLIU21S ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27二面体群的Grothendieck环结构唐帅泰州学院数理学院泰州225300TheStructureofGrothendieckRingsofDihedralGroupsShuaiTANGDepartmentofMathematics,TaizhouCollege,Taizhou225300,P.R ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27伪自伴量子系统的酉演化与绝热定理黄永峰1,2,曹怀信1,王文华31陕西师范大学数学与信息科学学院西安710119;2昌吉学院数学系昌吉831100;3陕西师范大学民族教育学院西安710119UnitaryEvolutionandAdiabaticTheoremofPseudoSelf-adjoint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类次线性弱耦合系统无穷多个周期解的存在性王超盐城师范学院数学与统计学院盐城224002TheExistenceofInfinitePeriodicSolutionsofaClassofSub-linearSystemswithWeakCouplingChaoWANGSchoolofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时标上具正负系数的三阶阻尼动力方程的振动性张萍1,杨甲山21.邵阳学院理学院,邵阳422004;2.梧州学院大数据与软件工程学院,梧州543002OscillationofThird-orderDampedDynamicEquationswithPositiveandNegativeCoeffici ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Brinkman-Forchheimer流体与Darcy流体结构稳定性李远飞,郭战伟1.广东财经大学华商学院,广州511300;2.广东交通职业技术学院,广州510507StructuralStabilityofaResonantPenetrativeConvectioninaBrinkman-Fo ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具年龄结构和非局部扩散的三种群Lotka-Volterra竞争合作系统行波解稳定性张丽娟,霍振香,任晴晴,王福昌防灾科技学院,廊坊065201StabilityoftheTravelingWaveSolutionsforThreeSpeciesLotka-VolterraCompetitive-co ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有非紧条件的拟线性Schrdinger-Poisson系统非平凡解的存在性陈丽珍1,冯晓晶2,李刚31.山西财经大学应用数学学院,太原,030006;2.山西大学数学科学学院,太原,030006;3.扬州大学数学科学学院,扬州,225002TheExistenceofNontrivia ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|