删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Zalcman引理在随机迭代函数族动力系统中的应用

本站小编 Free考研考试/2021-12-27

Zalcman引理在随机迭代函数族动力系统中的应用 黄小杰1,2, 刘芝秀11 南昌工程学院理学院 江西 330099;
2 复旦大学计算机科学技术学院 上海 200433 An Application of Zalcman Lemma in Dynamical Systems of Random Iterated Function Families Xiao Jie HUANG1,2, Zhi Xiu LIU11 Department of Science, Nanchang Institute of Technology, Jiangxi 330099, P. R. China;
2 School of Computer Science and Technology, Fudan University, Shanghai 200433, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(482 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文根据Schwick的思想,利用Zalcman引理讨论了随机迭代函数族动力系统,指出了函数族随机迭代动力系统的Fatou集和函数族衍生半群动力系统的Fatou集定义差别明显但却等价.并获得了如下正规定则,设F={fi|fi为C(C)上的非线性解析函数,iM},其中M为非空指标集,ΣM={(j1j2,…,jn,…)|jiMi ∈ N},若对任意的指标序列σ=(j1j2,…,jn,…)∈ ΣM,迭代序列{Wσn=fjn º fjn-1 º … ºfj1z)|n ∈ N}在点z处正规,则函数族F本身在点z处正规.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-12-20
MR (2010):O174.5
基金资助:国家自然科学基金资助项目(11671091,11731003);江西省教育厅科技项目(GJJ180944,GJJ190963)
作者简介: 黄小杰,E-mail:xjhuang14@fudan.edu.cn;刘芝秀,E-mail:270144355@qq.com
引用本文:
黄小杰, 刘芝秀. Zalcman引理在随机迭代函数族动力系统中的应用[J]. 数学学报, 2020, 63(5): 531-536. Xiao Jie HUANG, Zhi Xiu LIU. An Application of Zalcman Lemma in Dynamical Systems of Random Iterated Function Families. Acta Mathematica Sinica, Chinese Series, 2020, 63(5): 531-536.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I5/531


[1] Baker I. N., Repulsive fixedpoints of entire functions, Math. Zeit., 1968, 104:252-256.
[2] Bargmann D., Simple proofs of some fundamental properties of the Julia set, Ergod. Th.& Dynam. Sys., 1999, 19:553-558.
[3] Bergweiler W., Iteration of meromorphic functions, Bulletin of the American Mathematical Society, 1993, 29(2):151-189.
[4] Fatou P., Sur les é quations fonctionnelles (in French), Bull. Soc. Math. France, 1920, 48:208-314.
[5] Gong Z. M., Ren F. Y., A random dynamical system formed by infinitely many functions, J. Fudan University, 1996, 35:387-392.
[6] Gu Y. X., Pang X. C., Fang M. L., The Theory of Normal Family and Its Application (in Chinese), Science Press, Beijing, 2007.
[7] Hinkkanen A., Martin G. J., The dynamics of semigroups of rational functions I, Proc. London Math. Soc., 1996, 73(3):358-384.
[8] Hinkkanen A., Martin G. J., Julia Sets of Rational Semigroups, Math. Z., 1996, 222(2):161-169.
[9] Jaerisch J., Sumi H., Dynamics of infinitely generated nicely expanding rational semigroups and the inducing method, Transactions of the American Mathematical Society, 2017, 369(9):6147-6187.
[10] Julia G., Memoire sur l'tération des fonctions rationnelles (in French), J. Math. Pure Appl., 1918, 8:47-245.
[11] Kriete H., Sumi H., Semihyperbolic transcendental semigroups, Journal of Mathematics of Kyoto University, 2000, 40(2):205-216.
[12] Ren F. Y., Qiu W. Y., Yin Y. C., et al., Complex Analytic Dynamical System (in Chinese), Fudan University Press, Shanghai, 1997.
[13] Schwick W., Repelling periodic points in the Julia set, Bulletin of the London Mathematical Society, 1997, 29(3):314-316.
[14] Stankewitz R., Density of repelling fixed points in the Julia set of a rational or entire semigroup, Journal of Difference Equations and Applications, 2010, 16(5-6):763-771.
[15] Stankewitz R., Density of repelling fixed points in the Julia set of a rational or entire semigroup II, Discrete and Continuous Dynamical Systems A, 2012, 32(7):2583-2589.
[16] Sumi H., Random complex dynamics and semigroups of holomorphic maps, Proceedings of the London Mathematical Society, 2011, 102(1):50-112.
[17] Yang L., Value Distribution Theory, Springer-Verlag & Science Press, Berlin, 1993.
[18] Zalcman L., A heuristic principle in complex function theory, American Mathematical Monthly, 1975, 82(8):813-817.
[19] Zhou W. M., Ren F. Y., Julia set of stochastic iterative system of transcendental entire functions (in Chinese), Chinese Science Bulletin, 1993, 38(4):289-289.

[1]杨刘, 庞学诚. 多复变Pang-Zalcman引理及应用[J]. 数学学报, 2020, 63(6): 577-586.
[2]文慧霞, 舒级, 李林芳. 一类非自治分数阶随机波动方程的随机吸引子[J]. 数学学报, 2019, 62(1): 25-40.
[3]曾翠萍, 邓炳茂, 方明亮. 分担函数集的正规定则[J]. 数学学报, 2018, 61(4): 569-576.
[4]仇惠玲, 方彩云, 方明亮. 涉及例外函数与分担函数的正规族[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 345-352.
[5]刘晓毅, 程春暖. 正规族与分担函数[J]. Acta Mathematica Sinica, English Series, 2013, 56(6): 941-950.
[6]王品玲, 刘丹, 方明亮. 分担值与具有重零点的亚纯函数正规族[J]. Acta Mathematica Sinica, English Series, 2013, 56(3): 343-352.
[7]赵文强, 李扬荣. 带加法白噪声的随机Boussinesq方程组的解的渐近行为[J]. Acta Mathematica Sinica, English Series, 2013, 56(1): 1-14.
[8]刘晓毅, 常建明. 分担集合的亚纯函数正规族[J]. Acta Mathematica Sinica, English Series, 2011, 54(6): 1049-1056.
[9]徐焱, 常建明. 正规定则与重值[J]. Acta Mathematica Sinica, English Series, 2011, 54(2): 265-270.
[10]张莎莎, 涂振汉. 多复变全纯函数族正规准则[J]. Acta Mathematica Sinica, English Series, 2010, 53(6): 1045-1050.
[11]吕锋, 徐俊峰, 仪洪勋. 全纯函数的正规族[J]. Acta Mathematica Sinica, English Series, 2010, 53(5): 963-974.
[12]陈俊凡. 与例外函数和分担函数相关的亚纯函数的正规族[J]. Acta Mathematica Sinica, English Series, 2010, 53(4): 655-662.
[13]肖映青, 邱维元. Julia集和等势线上的Chebyshev多项式[J]. Acta Mathematica Sinica, English Series, 2010, 53(2): 323-328.
[14]杨存基. 超整函数族Julia集的Hausdorff维数[J]. Acta Mathematica Sinica, English Series, 2010, 53(1): 187-198.
[15]张庆德;秦春艳;. 亚纯函数的正规族与分担值[J]. Acta Mathematica Sinica, English Series, 2008, 51(1): 145-152.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23638
相关话题/动力 数学 系统 序列 指标