删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

正规结构和带参数的约当-冯诺依曼型常数

本站小编 Free考研考试/2021-12-27

正规结构和带参数的约当-冯诺依曼型常数 左占飞重庆三峡学院数学与统计学院 万州 404100 The Normal Structure and Parametrized Jordan-von Neumann type Constant Zhan Fei ZUODepartment of Mathematics and Statistics, Chongqing Three Gorges University, Wanzhou 404100, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(410 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要首先引入了带参数的约当-冯诺依曼型常数,然后研究了它的一些相关性质,并给出了它的取值范围,同时还利用带参数的约当-冯诺依曼型常数,弱正交系数μX)和Domínguez Benavides系数R(1,X)之间的关系,给出了空间具有正规结构的一些充分条件,这些结论改进了一些文献中的结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-10-17
MR (2010):O177.2
基金资助:重庆市自然科学基金基础研究与前沿探索专项面上项目(cstc2019jcyj-msxmX0289);重庆市科委基础研究与前沿探索(cstc2018jcyjAX0773);重庆三峡学院人才引进项目
作者简介: 左占飞,E-mail:zuozhanfei@139.com
引用本文:
左占飞. 正规结构和带参数的约当-冯诺依曼型常数[J]. 数学学报, 2020, 63(6): 655-660. Zhan Fei ZUO. The Normal Structure and Parametrized Jordan-von Neumann type Constant. Acta Mathematica Sinica, Chinese Series, 2020, 63(6): 655-660.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I6/655


[1] Bynum W., Normal structure coefficients for Banach spaces, Pacific J. Math., 1980, 86(2):427-436.
[2] Cui Y., Huang W., Generalized von Neumann-Jordan constant and its relationship to the fixed point property, Fixed Point Theory and Applications, 2015(40):11 pp.
[3] Cui Y., Zhang M., Generalized Zb?ganu Constant, Journal of Harbin University of Science and Technology, 2017, 22(5):126-129.
[4] Domínguez Benavides T., A geometrical coefficient implying the fixed point property and stability results, Houston J. Math., 1996, 22(4):835-849.
[5] Gao J., Saejung S., Normal structure and the generalized James and Zb?ganu constants, Nonlinear Analysis., 2009, 71:3047-3052.
[6] Jiménez-Melado A., Llorens-Fuster E., Saejung S., The von Neumann-Jordan constant, weak orthogonality and normal structure in Banach spaces, Proc. Amer. Math. Soc., 2006, 134(2):355-364.
[7] Kato M., Maligranda L., Takahashi Y., On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Studia Math., 2001, 144(3):275-295.
[8] Kirk W. A., A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 1965, 72(1):1004-1006.
[9] Llorens-Fuster E., Zb?ganu constant and normal structure, Fixed Point Theory, 2008, 9:159-172.
[10] Mazcuñán-Navarro E., Banach space properties sufficient for normal structure, J. Math. Anal. Appl., 2008, 337:197-218.
[11] Yang C., Wang T., On the generalized von Neumann-Jordan constant CNJ(p)(X), J. Comput. Anal. Appl., 2017, 23(5):860-866.
[12] Zb?ganu G., An inequality of M. Radulescu and S. Radulescu which characterizes the inner product spaces, Rev. Roumaine Math. Pures Appl., 2002, 47(2):253-257.
[13] Zuo Z. F., Tang C. L., On James and Jordan von Neumann type constants and the normal structure in Banach spaces, Topol. Methods Nonlinear Anal., 2017, 49:615-623.
[14] Zuo Z. F., Tang C. L., On Jordan-von Neumann type constants and normal structure in Banach spaces, Acta Mathematica Sinica, 2017, 60(3):383-388.
[15] Zuo Z. F., Banas-Hajnosz-Wedrychowicz type modulus of convexity and uniform normal structure in Banach space, Journal of Fixed Point Theory and Applications, 2018, 20(2):1-10.

[1]左占飞. 广义的约当-冯诺依曼型常数和正规结构[J]. 数学学报, 2019, 62(5): 809-816.
[2]左占飞, 唐春雷. Banach空间中的Jordan-von Neumann型常数和正规结构[J]. 数学学报, 2017, 60(3): 383-388.
[3]左占飞, 王良伟, 刘学飞, 陈晓春. Banach空间中弱收敛序列系数的估计[J]. 数学学报, 2016, 59(2): 145-150.
[4]黄建锋;王元恒;. 迭代逼近m-增生映象的零点[J]. Acta Mathematica Sinica, English Series, 2008, 51(3): 435-446.
[5]徐宗本. L~p 空间特征不等式及应用[J]. Acta Mathematica Sinica, English Series, 1989, 32(2): 209-218.
[6]赵汉宾. Banach空间中的平均非扩张映象:不动点的存在定理[J]. Acta Mathematica Sinica, English Series, 1979, 22(4): 459-470.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23674
相关话题/结构 空间 数学 基础 重庆三峡学院