删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Banach空间中正则非退化异宿环的Lipschitz扰动

本站小编 Free考研考试/2021-12-27

Banach空间中正则非退化异宿环的Lipschitz扰动 陈员龙, 骆世广广东金融学院金融数学与统计学院 广州 510521 The Lipschitz Perturbations of Regular Nondegenrate Heteroclinic Cycles in Banach Spaces Yuan Long CHEN, Shi Guang LUOSchool of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(421 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究Banach空间上离散动力系统的Lipschitz扰动.设f,g是Banach空间(X,||·||)上的连续自映射.如果f具有正则非退化返回排斥子或正则非退化异宿环且gf的Lipschitz小扰动,则g也有正则非退化返回排斥子或正则非退化异宿环.另外,本文还证明完备度量空间中正则非退化异宿环蕴含正则非退化返回排斥子.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-05-25
MR (2010):O19
基金资助:国家自然科学基金(11671410);广东省自然科学基金(2017A030313037,2018A0303130120);广东省普通高校自然科学重点项目(2019KZDXM036)资助项目
通讯作者:骆世广,E-mail:26-047@gduf.edu.cn
作者简介: 陈员龙,E-mail:chernylong@163.com
引用本文:
陈员龙, 骆世广. Banach空间中正则非退化异宿环的Lipschitz扰动[J]. 数学学报, 2021, 64(3): 485-492. Yuan Long CHEN, Shi Guang LUO. The Lipschitz Perturbations of Regular Nondegenrate Heteroclinic Cycles in Banach Spaces. Acta Mathematica Sinica, Chinese Series, 2021, 64(3): 485-492.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I3/485


[1] Banks J., Brooks J., Cairns G., et al., On Devaney's definition of chaos, Amer. Math. Mon., 1992, 99:332-334.
[2] Chen Y., Huang T., Huang Y., Complex dynamics of a delayed discrete neural network of two nonidentical neurons, Chaos, 2014, 24:013108.
[3] Chen Y., Huang Y., Li L., The persistence of snap-back repeller under small C1 perturbations in Banach spaces, Internat. J. Bifur. Chaos, 2011, 21(3):703-710.
[4] Chen Y., Huang Y., Zou X., Chaotic invariant sets of a delayed discrete neural network of two non-identical neurons, Sci. China Math., 2013, 56(9):1869-1878.
[5] Chen Y., Li L., Wu X., et al., The structural stability of maps with heteroclinic repellers, Internat. J. Bifur. Chaos, 2020, 30:accepted.
[6] Chen H., Li M., Stability of symbolic embeddings for difference equations and their multidimensional perturbations, J. Differential Equations, 2015, 258:906-918.
[7] Chen Y., Wu X., The C1 persistence of heteroclinic repellers in Rn, J. Math. Anal. Appl., 2020, 485(2):1-9.
[8] Devaney R., An Introduction to Chaotic Dynamical Systems (Second Edition), Addison-Wesley Publishing Company, Redwood City, 1989.
[9] Huang W., Ye X., Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topol. Appl., 2002, 117:259-272.
[10] Li J., Ye X., Recent development of chaos theory in topological dynamics, Acta Math. Sin. Engl. Ser., 2016, 32(1):83-114.
[11] Li S., ω-Chaos and topological entropy, T. Amer. Math. Soc., 1993, 339(1):243-249.
[12] Li T., Yorke J., Period three implies chaos, Amer. Math. Mon., 1975, 82:985-992.
[13] Li Z., Shi Y., Zhang C., Chaos induced by heteroclinic cycles connecting repellers in complete metric spaces, Chaos Solitons Fractals, 2008, 36:746-761.
[14] Li M., Lyu M., A simple proof for presistence of snap-back repellers, J. Math. Anal. Appl., 2009, 352:669-671.
[15] Liao G., Fan Q., Minimal subshifts which display Schweizer-Smítal chaos and have zero topological entropy, Science in China, Ser. A, 1998, 41(1):33-38.
[16] Lu K., Yang Q., Xu W., Heteroclinic cycles and chaos in a class of 3D three-zone piecewise affine systems, J. Math. Anal. Appl., 2019, 478(1):58-81.
[17] Marotto F., Snap-back repellers imply chaos in Rn, J. Math. Anal. Appl., 1978, 63:199-223.
[18] Marotto F., Chaotic behavior in the Hénon mapping, Commun. Math. Phys., 1979, 68:187-194.
[19] Schweizer B., Smítal J., Measures of chaos and a spectral decomposition of dynamical systems on the interval, T. Amer. Math. Soc., 1994, 344(2):737-754.
[20] Shi Y., Chen G., Chaos for discrete dynamical systems in complete metric spaces, Chaos Solitons Fractals, 2004, 22:555-571.
[21] Shi Y., Chen G., Discrete chaos in Banach spaces, Sci. China Math., 2005, 48(2):222-238.
[22] Wu X., Chen Y., Tian J., et al., Chaotic dynamics of discrete multiple-time delayed neural networks of ring architecture evoked by external inputs, Internat. J. Bifur. Chaos, 2016, 26(11):1650179.
[23] Wu X., Chen Y., Wang F., Chaotic criteria in complete metric spaces (in Chinese), Acta Mathematica Sinica Chinese Series, 2020, 63:1-7.
[24] Ye X., Huang W., Shao S., An Introduction to Topological Dynamics (in Chinese), Science Press, Beijing, 2008.
[25] Zou Z., Symbolic Dynamics (in Chinese), Shanghai Science and Technology Press, Shanghai, 1997.

[1]吴小英, 陈员龙, 王芬. 完备度量空间中的混沌判定[J]. 数学学报, 2021, 64(2): 225-230.
[2]路秋英, 邓桂丰, 刘潇, 朱德明. 连接两个具有一维不稳定流形的双曲鞍点异宿环的稳定性[J]. 数学学报, 2018, 61(5): 761-770.
[3]吴新星, 朱培勇. 由双Furstenberg族诱导的混沌[J]. Acta Mathematica Sinica, English Series, 2012, 55(6): 1039-1054.
[4]王肖义, 黄煜. 含混沌真子系统的Li-Yorke混沌[J]. Acta Mathematica Sinica, English Series, 2012, 55(4): 749-756.
[5]李占红, 汪火云, 熊金城. (F1,F2)-攀援集的一些注记[J]. Acta Mathematica Sinica, English Series, 2010, 53(4): 727-732.
[6]吕杰熊金城谭枫. 周期吸附系统的分布混沌[J]. Acta Mathematica Sinica, English Series, 2008, 51(6): 1109-111.
[7]金银来;朱德明. 三点粗异宿环分支[J]. Acta Mathematica Sinica, English Series, 2004, 47(6): 1237-124.
[8]杨润生. 拓扑遍历与拓扑双重遍历[J]. Acta Mathematica Sinica, English Series, 2003, 46(3): 555-560.
[9]何伟弘;周作领. 测度中心为单点集的强拓扑混合系统[J]. Acta Mathematica Sinica, English Series, 2002, 45(5): 929-934.
[10]杨润生. 按序列分布混沌与拓扑混合[J]. Acta Mathematica Sinica, English Series, 2002, 45(4): 753-758.
[11]杨润生. 拓扑遍历映射[J]. Acta Mathematica Sinica, English Series, 2001, 44(6): 1063-106.
[12]耿祥义. Li-Yorke混沌的充要条件[J]. Acta Mathematica Sinica, English Series, 2001, 44(5): 929-932.
[13]蔡惠京. 指数型一次Logistic迭代方程解的周期倍分岔现象[J]. Acta Mathematica Sinica, English Series, 2001, 44(4): 761-768.
[14]范钦杰;王辉;廖公夫. 两个符号的等长代换子系统的混沌性态[J]. Acta Mathematica Sinica, English Series, 2000, 43(4): 727-732.
[15]杨润生;沈苏林. 伪轨跟踪与完全正熵[J]. Acta Mathematica Sinica, English Series, 1999, 42(1): 99-104.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23766
相关话题/空间 数学 系统 统计学院 动力