摘要本文研究Banach空间上离散动力系统的Lipschitz扰动.设f,g是Banach空间(X,||·||)上的连续自映射.如果f具有正则非退化返回排斥子或正则非退化异宿环且g是f的Lipschitz小扰动,则g也有正则非退化返回排斥子或正则非退化异宿环.另外,本文还证明完备度量空间中正则非退化异宿环蕴含正则非退化返回排斥子. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-05-25 | | 基金资助:国家自然科学基金(11671410);广东省自然科学基金(2017A030313037,2018A0303130120);广东省普通高校自然科学重点项目(2019KZDXM036)资助项目
| 通讯作者:骆世广,E-mail:26-047@gduf.edu.cn | 作者简介: 陈员龙,E-mail:chernylong@163.com |
[1] Banks J., Brooks J., Cairns G., et al., On Devaney's definition of chaos, Amer. Math. Mon., 1992, 99:332-334. [2] Chen Y., Huang T., Huang Y., Complex dynamics of a delayed discrete neural network of two nonidentical neurons, Chaos, 2014, 24:013108. [3] Chen Y., Huang Y., Li L., The persistence of snap-back repeller under small C1 perturbations in Banach spaces, Internat. J. Bifur. Chaos, 2011, 21(3):703-710. [4] Chen Y., Huang Y., Zou X., Chaotic invariant sets of a delayed discrete neural network of two non-identical neurons, Sci. China Math., 2013, 56(9):1869-1878. [5] Chen Y., Li L., Wu X., et al., The structural stability of maps with heteroclinic repellers, Internat. J. Bifur. Chaos, 2020, 30:accepted. [6] Chen H., Li M., Stability of symbolic embeddings for difference equations and their multidimensional perturbations, J. Differential Equations, 2015, 258:906-918. [7] Chen Y., Wu X., The C1 persistence of heteroclinic repellers in Rn, J. Math. Anal. Appl., 2020, 485(2):1-9. [8] Devaney R., An Introduction to Chaotic Dynamical Systems (Second Edition), Addison-Wesley Publishing Company, Redwood City, 1989. [9] Huang W., Ye X., Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topol. Appl., 2002, 117:259-272. [10] Li J., Ye X., Recent development of chaos theory in topological dynamics, Acta Math. Sin. Engl. Ser., 2016, 32(1):83-114. [11] Li S., ω-Chaos and topological entropy, T. Amer. Math. Soc., 1993, 339(1):243-249. [12] Li T., Yorke J., Period three implies chaos, Amer. Math. Mon., 1975, 82:985-992. [13] Li Z., Shi Y., Zhang C., Chaos induced by heteroclinic cycles connecting repellers in complete metric spaces, Chaos Solitons Fractals, 2008, 36:746-761. [14] Li M., Lyu M., A simple proof for presistence of snap-back repellers, J. Math. Anal. Appl., 2009, 352:669-671. [15] Liao G., Fan Q., Minimal subshifts which display Schweizer-Smítal chaos and have zero topological entropy, Science in China, Ser. A, 1998, 41(1):33-38. [16] Lu K., Yang Q., Xu W., Heteroclinic cycles and chaos in a class of 3D three-zone piecewise affine systems, J. Math. Anal. Appl., 2019, 478(1):58-81. [17] Marotto F., Snap-back repellers imply chaos in Rn, J. Math. Anal. Appl., 1978, 63:199-223. [18] Marotto F., Chaotic behavior in the Hénon mapping, Commun. Math. Phys., 1979, 68:187-194. [19] Schweizer B., Smítal J., Measures of chaos and a spectral decomposition of dynamical systems on the interval, T. Amer. Math. Soc., 1994, 344(2):737-754. [20] Shi Y., Chen G., Chaos for discrete dynamical systems in complete metric spaces, Chaos Solitons Fractals, 2004, 22:555-571. [21] Shi Y., Chen G., Discrete chaos in Banach spaces, Sci. China Math., 2005, 48(2):222-238. [22] Wu X., Chen Y., Tian J., et al., Chaotic dynamics of discrete multiple-time delayed neural networks of ring architecture evoked by external inputs, Internat. J. Bifur. Chaos, 2016, 26(11):1650179. [23] Wu X., Chen Y., Wang F., Chaotic criteria in complete metric spaces (in Chinese), Acta Mathematica Sinica Chinese Series, 2020, 63:1-7. [24] Ye X., Huang W., Shao S., An Introduction to Topological Dynamics (in Chinese), Science Press, Beijing, 2008. [25] Zou Z., Symbolic Dynamics (in Chinese), Shanghai Science and Technology Press, Shanghai, 1997.
|
[1] | 吴小英, 陈员龙, 王芬. 完备度量空间中的混沌判定[J]. 数学学报, 2021, 64(2): 225-230. | [2] | 路秋英, 邓桂丰, 刘潇, 朱德明. 连接两个具有一维不稳定流形的双曲鞍点异宿环的稳定性[J]. 数学学报, 2018, 61(5): 761-770. | [3] | 吴新星, 朱培勇. 由双Furstenberg族诱导的混沌[J]. Acta Mathematica Sinica, English Series, 2012, 55(6): 1039-1054. | [4] | 王肖义, 黄煜. 含混沌真子系统的Li-Yorke混沌[J]. Acta Mathematica Sinica, English Series, 2012, 55(4): 749-756. | [5] | 李占红, 汪火云, 熊金城. (F1,F2)-攀援集的一些注记[J]. Acta Mathematica Sinica, English Series, 2010, 53(4): 727-732. | [6] | 吕杰熊金城谭枫. 周期吸附系统的分布混沌[J]. Acta Mathematica Sinica, English Series, 2008, 51(6): 1109-111. | [7] | 金银来;朱德明. 三点粗异宿环分支[J]. Acta Mathematica Sinica, English Series, 2004, 47(6): 1237-124. | [8] | 杨润生. 拓扑遍历与拓扑双重遍历[J]. Acta Mathematica Sinica, English Series, 2003, 46(3): 555-560. | [9] | 何伟弘;周作领. 测度中心为单点集的强拓扑混合系统[J]. Acta Mathematica Sinica, English Series, 2002, 45(5): 929-934. | [10] | 杨润生. 按序列分布混沌与拓扑混合[J]. Acta Mathematica Sinica, English Series, 2002, 45(4): 753-758. | [11] | 杨润生. 拓扑遍历映射[J]. Acta Mathematica Sinica, English Series, 2001, 44(6): 1063-106. | [12] | 耿祥义. Li-Yorke混沌的充要条件[J]. Acta Mathematica Sinica, English Series, 2001, 44(5): 929-932. | [13] | 蔡惠京. 指数型一次Logistic迭代方程解的周期倍分岔现象[J]. Acta Mathematica Sinica, English Series, 2001, 44(4): 761-768. | [14] | 范钦杰;王辉;廖公夫. 两个符号的等长代换子系统的混沌性态[J]. Acta Mathematica Sinica, English Series, 2000, 43(4): 727-732. | [15] | 杨润生;沈苏林. 伪轨跟踪与完全正熵[J]. Acta Mathematica Sinica, English Series, 1999, 42(1): 99-104. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23766
带有对数非线性项的回火分数p-Laplace系统的驻波解王国涛1,2,侯文文1,张丽红1,RaviP.AGARWAL3,21.山西师范大学数学与计算机科学学院临汾041004;2.NonlinearAnalysisandAppliedMathematics(NAAM)ResearchGroup,De ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非自治随机FitzHugh-Nagumo系统的随机一致指数吸引子韩宗飞,周盛凡浙江师范大学数学与计算机科学学院金华321004RandomUniformExponentialAttractorforNon-autonomousStochasticFitzHugh-NagumoSystemZongFe ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27半序MengerPM-空间中广义弱压缩映射的最佳逼近点定理吴照奇1,朱传喜1,袁成桂21.南昌大学理学院数学系南昌330031;2.英国斯旺西大学数学系斯旺西SA28PPBestProximityPointTheoremsforGeneralizedWeakContractiveMappingsin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27完备度量空间中的混沌判定吴小英,陈员龙,王芬广东金融学院金融数学与统计学院广州510521ChaoticCriteriainCompleteMetricSpacesXiaoYingWU,YuanLong,CHENFenWANGSchoolofFinancialMathematicsandStatis ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非等熵气体动力学方程组大初值问题的放缩框架刘树君南京财经大学应用数学学院南京210023AScalingFrameworkfortheNon-isentropicGasDynamicsSystemwithLargeInitialDataShuJunLIUSchoolofAppliedMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27空间几何常数与集值非扩张映射的不动点左占飞重庆三峡学院数学与统计学院重庆404100SomeGeometricConstantsandFixedPointsforMultivaluedNonexpansiveMappingsZhanFeiZUODepartmentofMathematicsandSt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间上p-fusion框架的若干等价描述林丽琼1,张云南21.福州大学数学与计算机科学学院福州350108;2.福建师范大学数学与信息学院福州350108SomeEquivalentDescriptionsofp-fusionFramesonBanachSpacesLiQiongLIN1 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27加权变指标Herz-Morrey空间上的双线性Hardy算子的交换子王盛荣,徐景实桂林电子科技大学数学与计算科学学院桂林541004CommutatorsofBilinearHardyOperatorsonWeightedHerzMorreySpaceswithVariableExpo ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27加权Bloch空间上复合算子的线性组合张利,楚秀娇南阳师范学院南阳473061LinearCombinationsofCompositionOperatorsonWeightedBlochTypeSpaceLiZHANG,XiuJiaoCHUNanyangNormalUniversity,Nanya ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27bp(2)空间中的等距映射王瑞东,王普天津理工大学理学院天津300384TheIsometryonbp(2)SpaceRuiDongWANG,PuWANGDepartmentofMathematics,TianjinUniversityofTechnology,Tianjin300384,P.R.C ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|