摘要本文首先给出了非自治随机动力系统的随机一致指数吸引子的概念及其存在性判据,其次证明了Rn上的带加法噪声和拟周期外力的FitzHugh—Nagumo系统的随机一致指数吸引子的存在性. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-11-04 | | 基金资助:国家自然科学基金资助项目(11871437)
| 通讯作者:周胜凡,E-mail:zhoushengfan@yahoo.comE-mail: zhoushengfan@yahoo.com |
[1] Abdallah A. Y., Uniform exponential attractors for first order non-autonomous lattice dynamical systems, J. Differential Equations, 2011, 251(6):1489-1504. [2] Adams R. A., Fournier J. F., Sobolev Spaces, 2nd edition, Academic Press, New York, 2009. [3] Adili A., Wang B., Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise, Discrete Contin. Dyn. Syst., 2013, Suppl:1-10. [4] Adili A., Wang B., Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 2013, 18:643-666. [5] Arnold L., Random Dynamical Systems, Springer-Verlag, New York, 2013. [6] Carvalho A. N., Sonner S., Pullback exponential attractors for evolution processes in Banach spaces:theoretical results, Commun. Pure Appl. Anal., 2013, 12(6):3047-3071. [7] Carvalho A. N., Sonner S., Pullback exponential attractors for evolution processes in Banach spaces:properties and applications, Commun. Pure Appl. Anal., 2014, 13(3):1141-1165. [8] Caraballo T., Sonner S., Random pullback exponential attractors:General existence results for random dynamical systems in Banach spaces, Discrete Contin. Dyn. Syst., 2017, 37(12):6383-6403. [9] Chepyzhov V. V., Vishik M. I., Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2000. [10] Chepyzhov V. V., Vishik M. I., Attractors of nonautonomous dynamical systems and their dimensions, J. Math. Pures Appl., 1994, 73(9):279-333. [11] Cui H., Freitas M., Langa J. A., On random cocycle attractors with autonomous attraction universes, Discrete Contin. Dyn. Syst. Ser. B, 2017, 22(9):3379-3407. [12] Cui H., Langa J. A., Uniform attractors for nonautonomous random dynamical systems, J. Differential Equations, 2017, 263(2):1225-1268. [13] Czaja R., Efendiev M., Pullback exponential attractors for nonautonomous equations Part I:Semilinear parabolic problems, J. Math. Anal. Appl., 2011, 381(2):748-765. [14] Du X., Guo B., The long time behavior for partly dissipative stochastic systems, J. Appl. Anal. Comput., 2011, 1(4):449-465. [15] Eden A., Foias C., Nicolaenko B., et al., Exponential Attractors for Dissipative Evolution Equations, John Wiley & Sons, Ltd, Chichester, 1994. [16] Efendiev M., Zelik S., Miranville A., Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 2005, 135(4):703-730. [17] Fabrie P., Miranville A., Exponential attractors for nonautonomous first-order evolution equations, Discrete Contin. Dynam. Systems, 1998, 4(2):225-240. [18] Fan X., Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 2006, 24(4):767-793. [19] FitzHugh R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1961, 1:445-466. [20] Flandoli F., Schmalfuß B., Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stochastics Stochastic Rep., 2007, 59(1-2):21-45.
|
[1] | 黄心中. 单位圆到水平条形无界区域的调和拟共形映照[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 875-880. | [2] | 陈光淦;蒲志林;魏赟赟. 无界区域R~1上的KDV型方程的指数吸引子[J]. Acta Mathematica Sinica, English Series, 2004, 47(3): 441-448. | [3] | 黄毅生;周育英. 无界区域上含p-Laplacian的共振问题[J]. Acta Mathematica Sinica, English Series, 2002, 45(5): 841-846. | [4] | 赵春山;李开泰. 无界区域上非自治Navier-Stokes方程的一致吸引子及其维数估计[J]. Acta Mathematica Sinica, English Series, 2000, 43(1): 33-42. | [5] | 黄少云;王耀东. 无界区域上非稳定井流的自由边界问题[J]. Acta Mathematica Sinica, English Series, 1983, 26(3): 354-377. | [6] | 应隆安;韩厚德. 关于无界区域和非齐次问题的无限元法[J]. Acta Mathematica Sinica, English Series, 1980, 23(1): 118-127. | [7] | 沈爕昌. 用函数系{z~(τn)log~jz}来逼近复平面上的函数[J]. Acta Mathematica Sinica, English Series, 1964, 14(3): 406-414. | [8] | 沈燮昌. 论函数序列{f(λ_nΖ)}的完备性[J]. Acta Mathematica Sinica, English Series, 1964, 14(1): 103-118. | [9] | 沈燮昌. 关于函数系{z~(τn)log~jz}在复数平面上的区域中的完备性問題[J]. Acta Mathematica Sinica, English Series, 1963, 13(3): 405-418. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23710
一类基于量子程序理论的序列效应代数李午栋1,张颖2,贺衎31太原理工大学数学学院太原030024;2太原理工大学信息与计算机学院太原030024;3太原理工大学数学学院&信息与计算机学院&软件学院太原030024ASub-sequentialEffectAlgebrafromtheQuantumPr ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Zalcman引理在随机迭代函数族动力系统中的应用黄小杰1,2,刘芝秀11南昌工程学院理学院江西330099;2复旦大学计算机科学技术学院上海200433AnApplicationofZalcmanLemmainDynamicalSystemsofRandomIteratedFunctionFami ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27伪自伴量子系统的酉演化与绝热定理黄永峰1,2,曹怀信1,王文华31陕西师范大学数学与信息科学学院西安710119;2昌吉学院数学系昌吉831100;3陕西师范大学民族教育学院西安710119UnitaryEvolutionandAdiabaticTheoremofPseudoSelf-adjoint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类次线性弱耦合系统无穷多个周期解的存在性王超盐城师范学院数学与统计学院盐城224002TheExistenceofInfinitePeriodicSolutionsofaClassofSub-linearSystemswithWeakCouplingChaoWANGSchoolofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类新的广义割圆序列的线性复杂度及其自相关值刘华宁,陈晓林西北大学数学学院西安710127AutocorrelationValuesandLinearComplexityofNewGeneralizedCyclotomicSquencesHuaNingLIU,XiaoLinCHENSchoolofM ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27随机变量序列加权和的一般Davis-Gut律李炜1,陈平炎21仲恺农业工程学院计算科学学院,广州510225;2暨南大学数学系,广州510630GeneralizedDavis-GutLawforWeightedSumsofRandomVariablesLIWei1,ChenPingyan21Col ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具年龄结构和非局部扩散的三种群Lotka-Volterra竞争合作系统行波解稳定性张丽娟,霍振香,任晴晴,王福昌防灾科技学院,廊坊065201StabilityoftheTravelingWaveSolutionsforThreeSpeciesLotka-VolterraCompetitive-co ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有非紧条件的拟线性Schrdinger-Poisson系统非平凡解的存在性陈丽珍1,冯晓晶2,李刚31.山西财经大学应用数学学院,太原,030006;2.山西大学数学科学学院,太原,030006;3.扬州大学数学科学学院,扬州,225002TheExistenceofNontrivia ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双参数奇摄动非线性抛物型系统的广义尖层解冯依虎1,2,侯磊2,莫嘉琪31.亳州学院电子与信息工程系,亳州236800;2.上海大学数学系,上海200436;3.安徽师范大学数学与统计学院,芜湖241003TheGeneralizedSpikeLayerSolutiontoSingularPertur ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时标上二阶拟线性延迟阻尼动态系统的动力学行为分析李继猛1,杨甲山21.邵阳学院理学院,邵阳422004;2.梧州学院大数据与软件工程学院,梧州543002DynamicalBehaviorofSecond-orderQuasilinearDelayDampedDynamicEquationsonTi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|