删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

半序Menger PM-空间中广义弱压缩映射的最佳逼近点定理

本站小编 Free考研考试/2021-12-27

半序Menger PM-空间中广义弱压缩映射的最佳逼近点定理 吴照奇1, 朱传喜1, 袁成桂21. 南昌大学理学院数学系 南昌 330031;
2. 英国斯旺西大学数学系 斯旺西 SA2 8PP Best Proximity Point Theorems for Generalized Weak Contractive Mappings in Partially Ordered Menger PM-spaces Zhao Qi WU1, Chuan Xi ZHU1, Cheng Gui YUAN21. Department of Mathematics, College of Science, Nanchang University, Nanchang 330031, P. R. China;
2. Department of Mathematics, Swansea University, Singleton Park, SA2 8PP, UK
摘要
图/表
参考文献
相关文章

全文: PDF(464 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文利用三个控制函数给出了半序Menger PM-空间中满足特定条件的广义弱压缩映射的最佳逼近点定理,并给出了最佳逼近点唯一的充分条件.进一步地,还给出了主要结果的一些推论.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-11-01
MR (2010):O177.2
基金资助:国家自然科学基金资助项目(11701259,11461045,11771198,11361042);江西省自然科学基金资助项目(20202BAB201001)
引用本文:
吴照奇, 朱传喜, 袁成桂. 半序Menger PM-空间中广义弱压缩映射的最佳逼近点定理[J]. 数学学报, 2021, 64(2): 177-188. Zhao Qi WU, Chuan Xi ZHU, Cheng Gui YUAN. Best Proximity Point Theorems for Generalized Weak Contractive Mappings in Partially Ordered Menger PM-spaces. Acta Mathematica Sinica, Chinese Series, 2021, 64(2): 177-188.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I2/177


[1] Abkar A., Gabeleh M., Global optimal solutions of noncyclic mappings in metric spaces, J. Optim. Theory Appl., 2012, 153:298-305.
[2] Abkar A., Gabeleh M., A best proximity point theorem for Suzuki type contraction non-self-mappings, Fixed Point Theory, 2013, 14:281-288.
[3] Basha S. S., Discrete optimization in partially ordered sets, J. Glob. Optim., 2012, 54:511-517.
[4] Chang S., Cho Y. J., Kang S. M., Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova Science Publishers Inc., New York, 2001.
[5] Choudhury B. S., Metiya N., Maniu G., et al., Best proximity results:optimization by approximate solutions, Fixed Point Theory Appl., 2016, 2016:79.
[6] Choudhury B. S., Metiya N., Postolache M., A generalized weak contraction principle with applications to coupled coincidence point problems, Fixed Point Theory Appl., 2013, 2013:152.
[7] Gabeleh M., Proximal weakly contractive and proximal nonexpansive non-self-mappings in metric and Banach spaces, J. Optim. Theory Appl., 2013, 158:615-625.
[8] Gabeleh M., Best proximity point theorems via proximal non-self mappings, J. Optim. Theory Appl., 2015, 164:565-576.
[9] Had?i? O., Pap E., Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
[10] Harjani J., Sadarangani K., Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. Theory Methods Appl., 2009, 71:3403-3410.
[11] Kumam P., Salimi P., Vetro C., Best proximity point results for modified α-proximal C-contraction mappings, Fixed Point Theory Appl., 2014, 2014:99.
[12] Menger K., Statistical metrics, Proc. Natl. Acad. Sci. USA, 1942, 28:535-537.
[13] Sankar Raj V., A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Anal., Theory Methods Appl., 2011, 74:4804-4808.
[14] Schweizer B., Sklar A., Statistical metric spaces, Pacific J. Math., 1960, 10:313-334.
[15] Schweizer B., Sklar A., Probabilistic Metric Spaces, North-Holland, Amsterdam, 1983.
[16] Schweizer B., Commentary on Probabilistic Geometry, In:Selecta Mathematica, edited by B. Schweizer, A. Sklar, K. Sigmund, et al., Springer, Wienna, 2003, 409-432.
[17] Shayanpour H., Shams M., Nematizadeh A., Some results on best proximity point on star-shaped sets in probabilistic Banach (Menger) spaces, Fixed Point Theory Appl., 2016, 2016:13.
[18] Su Y., Gao W., Yao J., Generalized contraction mapping principle and generalized best proximity point theorems in probabilistic metric spaces, Fixed Point Theory Appl., 2015, 2015:76.
[19] Su Y., Zhang J., Fixed point and best proximity point theorems for contractions in new class of probabilistic metric spaces, Fixed Point Theory Appl., 2014, 2014:170.
[20] Wu Z., Zhu C., Li J., Common fixed point theorems for two hybrid pairs of mappings satisfying the common property (E.A) in Menger PM-spaces, Fixed Point Theory Appl., 2013, 2013:25.
[21] Wu Z., Zhu C., Zhang X., Some new fixed point theorems for single and set-valued admissible mappings in Menger PM-spaces, RACSAM, 2016, 110:755-769.
[22] Wu Z., Zhu C., Yuan C., Fixed point results for (α, η, φ, ξ)-contractive multi-valued mappings in Menger PM-Spaces and their applications, Filomat, 2017, 31(16):5357-5368.
[23] Wu Z., Zhu C., Yuan C., Fixed point results for cyclic contractions in Menger PM-spaces and generalized Menger PM-spaces, RACSAM, 2018, 112:449-462.

[1]刘展, 朱传喜. Banach空间中一类二元算子方程的可解性及应用[J]. 数学学报, 2017, 60(3): 415-426.
[2]李娟, 朱传喜. 半序度量空间中公共二元随机重合点定理及其应用[J]. 数学学报, 2016, 59(3): 343-356.
[3]刘建辉, 朱传喜, 吴照奇. 半序概率度量空间中压缩条件下的三元重合点定理[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 517-526.
[4]刘展, 朱传喜. 半序空间中一类算子方程的可解性及应用[J]. Acta Mathematica Sinica, English Series, 2009, 52(6): 1181-1188.
[5]许绍元;曾超益;朱传喜. φ凹(-Ψ)凸混合单调算子不动点存在惟一性及其应用[J]. Acta Mathematica Sinica, English Series, 2005, 48(6): -.
[6]刘三阳;冯育强. 半序度量空间与半序Banach空间中一类算子方程的可解性[J]. Acta Mathematica Sinica, English Series, 2005, 48(1): 109-114.
[7]冯育强;刘三阳. 半序空间中一类算子方程的可解性[J]. Acta Mathematica Sinica, English Series, 2003, 46(2): 411-416.
[8]张宪. 半序度量空间中单调映射的不动点定理及混合单调映射的耦合不动点定理[J]. Acta Mathematica Sinica, English Series, 2001, 44(4): 641-646.
[9]王建国. Hammerstein型积分方程非零解的存在性及应用[J]. Acta Mathematica Sinica, English Series, 2001, 44(3): 535-540.
[10]王建国. 序Banach空间中不连续增算子的不动点[J]. Acta Mathematica Sinica, English Series, 2000, 43(1): 43-48.
[11]宋福民. Banach空间中微分方程的弱Carathodory解[J]. Acta Mathematica Sinica, English Series, 1998, 41(6): 0-0+0.
[12]张志涛. 混合单调算子的不动点定理及其应用[J]. Acta Mathematica Sinica, English Series, 1998, 41(6): 0-0+0.
[13]孙经先. 增算子的不动点和广义不动点[J]. Acta Mathematica Sinica, English Series, 1989, 32(4): 457-463.
[14]张上泰. 条件σ-完全的部分序线性系统中方程解的存在性和唯一性[J]. Acta Mathematica Sinica, English Series, 1984, 27(2): 257-263.
[15]徐士英. 线性拓扑空间中的序收敛[J]. Acta Mathematica Sinica, English Series, 1979, 22(6): 759-761.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23709
相关话题/空间 数学 数学系 理学院 控制