删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

无症状病人对传染病传播影响的模型研究

本站小编 Free考研考试/2021-12-27

无症状病人对传染病传播影响的模型研究 刘彬彬, 于辛雅, 齐龙兴安徽大学数学科学学院, 合肥 230601 Model Study on the Effect of Asymptomatic Patients on the Spread of Infectious Diseases LIU Binbin, YU Xinya, QI LongxingSchool of Mathematical Sciences, Anhui University, Hefei, China 230601, China
摘要
图/表
参考文献
相关文章(2)
点击分布统计
下载分布统计
-->

全文: PDF(467 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要为研究无症状病人对疾病传播的影响,本文研究了一类带有无症状病人的SISIa传染病模型,得出基本再生数和平衡点的存在性.通过选取恰当的Lyapunov函数和Dulac函数,利用Lasalle不变性原理和Bendixson-Dulac原理证明平衡点的全局渐近稳定性,并且发现此模型在边界平衡点会出现折分支和Bogdanov-Takens分支现象.由此可见,无症状病人在传染病传播过程中会导致系统产生复杂的动力学性态.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-07-07
PACS:O175
基金资助:国家自然科学基金(11401002,11771001),安徽省自然科学基金(2008085MA02)和安徽省高等学校自然科学基金(KJ2018A0029)资助.

引用本文:
刘彬彬, 于辛雅, 齐龙兴. 无症状病人对传染病传播影响的模型研究[J]. 应用数学学报, 2021, 44(5): 703-721. LIU Binbin, YU Xinya, QI Longxing. Model Study on the Effect of Asymptomatic Patients on the Spread of Infectious Diseases. Acta Mathematicae Applicatae Sinica, 2021, 44(5): 703-721.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I5/703


[1] Luo X, Feng S, Yang J. Analysis of potential risk of COVID-19 infections in China based on a pairwise epidemic model. Doi:https://doi.org/10.20944/preprints202002.0398.v1,2020
[2] 张双德, 郝海, 张喜红. 一类含有潜伏期的传染病动力学模型. 数理医药学杂志, 2002(05):385-386(Zhang S D, Hao H, Zhang X H. A Kind of Infectious Disease Kinetic Model with Latent Period. Journal of Mathematical Medicine, 2002(05):385-386)
[3] Kermack W, Mckendrick. Contributions to the mathematical theory of epidemics. Proceedings of the Royal Society of London, 1927, Al15:700-721
[4] Li T, Zhang F Q, Liu H W, et al. Threshold dynamics of an SIRS model with nonlinear incidence rate and transfer fromcinfectious to susceptible. Applied Mathematics Letters, 2017, 70:52-57
[5] Cai Y L, Kang Y, Malay B, et al. A stochastic SIRS epidemic model with infectious force under intervention strategies. Journal of Differential Equations, 2015, 259(12-15):74635-7502
[6] Eric Avila-Vales, ángel G C. Pérez. Dynamics of a time-delayed SIR epidemic model with logistic growth and saturated treatment Chaos. Solitons and Fractals, 2019, 127:55-69
[7] Dean N E, Halloran M E, Yang Y, et al. The transmissibility and pathogenicity of Ebola virus:a systematic review and meta-analysis of household secondary attack rate and asymptomatic infection. Clinical Infectious Diseases, 2016, 62:1277-1286
[8] Bellan S E, Pulliam J R C, Dushoff J, et al. Ebola control:effect of asymptomatic infection and acquired immunity. The Lancet, 2014, 384(9953):1499-1500
[9] Ingrid C, Clarke S E, Roly G, et al. "Asymptomatic" Malaria:a chronic and debilitating infection that should be treated. PLOS Medicine, 2016, 13(1):e1001942
[10] Li M., Kalajdzievska D. Modeling the effects of carriers on transmission dynamics of infectious diseases. Mathematical Biosciences and Engineering (Online), 2011, 8(3):711-722
[11] Dreessche P, Watmough J. Reproduction Numbers and Sub-threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Mathematical Biosciences, 2002, 180(1-2):29-48
[12] Zhang S X, Guo H B. Global analysis of age-structured multi-stage epidemic models for infectious diseases. Applied Mathematics and Computation, 2018, 337(15):214-233
[13] 虞江航, 徐军, 黄雨可. 一类反馈型非线性系统的跟踪控制. 北京航空航天大学学报, 2019, 45(07):1444-1450(Yu J H, Xu J, Huang Y K. Tracking control of a class of feedback nonlinear systems. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(07):1444-1450)
[14] Charlie H. Cooke a system equivalence related to Dulac's extension of Bendixson's negative theorem for planar dynamical systems. Applied Mathematics Letters, 2006, 19(11):1291-129215] 库兹涅佐夫. 应用分支理论基础. 北京:科学出版社, 2010(Kuznetsov. Theoretical Foundation of Applied Branches. Beijing:Science Press, 2010) 16] 贡金鑫, 赵国藩. 串联结构体系可靠度的二元泰勒级数展开. 计算力学学报, 1997, 14(1):78-84(Gong J X, Zhao G F. Binary Taylor Series Expansion of Reliability of Series Structure System. Journal of Computational Mechanics, 1997, 14(1):78-84)
[17] Perko L. Differential Equations and Dynamical Systems. New York:Springer, 1996
[18] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Physics Today, 1993, 38(11):102-105
[19] Bogdanov R. Bifurcations of a limit cycle for a family of vector fields on the plan. Selecta Math. Soviet, 1981(1):373-388

[1]李祖雄. 一类具有反馈控制的修正Leslie-Gower模型的周期解[J]. 应用数学学报, 2015, 38(1): 37-52.
[2]彭世国, 朱思铭. 一类无穷时滞微分系统的周期解和全局渐近稳定性[J]. 应用数学学报(英文版), 2004, 27(3): 416-422.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14935
相关话题/传播 应用数学 系统 控制 统计