删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于样本次序统计量的总体分位数的非参数统计推断

本站小编 Free考研考试/2021-12-27

基于样本次序统计量的总体分位数的非参数统计推断 赵旭, 程维虎北京工业大学理学部, 北京 100124 Non-parametric Statistical Inference for the Population Quantiles Based on Order Statistics of Samples ZHAO Xu, CHENG WeihuFaculty of Science, Beijing University of Technology, Beijing 100124, China
摘要
图/表
参考文献
相关文章(12)
点击分布统计
下载分布统计
-->

全文: PDF(513 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要随机总体分位数的统计推断理论与方法一直是统计学研究的重要课题.其主要原因是分位数的应用涉及众多领域,且在各领域的研究中起到举足轻重的作用.本文系统地论述了基于样本次序统计量的总体分位数的非参数统计推断的理论和方法;给出了基于样本次序统计量的总体分位数的估计方法,总体两个分位数之差的置信区间,总体容许区间的求解方法及符号检验.希望有助于读者的科研与应用.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-11-07
PACS:O212.7
基金资助:国家自然科学基金(11801019)和北京市自然科学基金重点研究专题(Z190021)资助项目.

引用本文:
赵旭, 程维虎. 基于样本次序统计量的总体分位数的非参数统计推断[J]. 应用数学学报, 2021, 44(4): 475-491. ZHAO Xu, CHENG Weihu. Non-parametric Statistical Inference for the Population Quantiles Based on Order Statistics of Samples. Acta Mathematicae Applicatae Sinica, 2021, 44(4): 475-491.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I4/475


[1] Parzen E. Nonparametric statistical data modeling. Journal of the American Statistical Association, 1979, 74(365):105-121
[2] Falk M. Asymptotic normality of the kernel quantile estimator. The Annals of Statistics, 1985, 13(1):428-433
[3] Kalgh W D, Lachenbruch P A. A generalized quantile estimator. Communications in StatisticsTheory and Methods, 1982, 11(19):2217-2238
[4] Yang S S. A smooth nonparametric estimator of a quantile function. Journal of the American Statistical Association, 1985, 80(392):1004-1011
[5] Dielman T, Lowry C, Pfaffenberger R. A comparison of quantile estimators. Communications in Statistics-Simulation and Computation, 1994, 23(2):355-371
[6] Cheng C, Parzen E. Unified estimators of smooth quantile and quantile density functions. Journal of Statistical Planning and Inference, 1997, 59(2):291-307
[7] Pepelyshev A, Rafajlowicz E, Steland A. Estimation of the quantile function using Bernstein Durrmeyer polynomials. Journal of Nonparametric Statistics, 2014, 26(1):1-20
[8] Hansmann M, Kohler M. Estimation of conditional quantiles from data with additional measurement errors. Journal of Statistical Planning and Inference, 2019, 200:176-195
[9] 周勇. 右删失左截断情形下分布函数的分位数估计. 应用数学学报, 1997, 20(3):456-465(Zhou Y. The product-limit quantile estimator for randomly trancated and censored data. Acta Mathematicae Applicatae Sinica, 1997, 20(3):456-465)
[10] 崔恒建. 附加信息下分布函数与分位数估计的渐近性质. 北京师范大学学报(自然科学版), 1998, 34(4):450-455(Cui H J. The asymptotic properties of distribution function and quantile estimates in the presence of auxiliary information. Journal of Beijing Normal University (Natural Science), 1998, 34(4):450-455)
[11] 王志刚, 毛志勇, 冯利英. 核分位数估计及其应用. 数学的实践与认识, 2013, 43(21):145-152(Wang Z G, Mao Z Y, Feng L Y. Kernel estimation of quantile and its application. Mathematics in Practice and Theory, 2013, 43(21):145-152)
[12] 常凯丽. 分位数的Bernstein型多项式估计及其性质研究. 哈尔滨工业大学理学硕士学位论文, 2018(Chang K L. Bernstein Type Polynomial Estimation of Quantile Function and Its Properties. Dissertation for the Master Degree in Science, 2018)
[13] Thompson W R. On confidence ranges for the median and other expectation distributions for populations of unknown distribution form. The Annals of Mathematical Statistics, 1936, 7(3):122-128
[14] Scheffe H, Tukey J W. Non-parametric estimation. I. Validation of order statistics. The Annals of Mathematical Statistics, 1945, 16(2):187-192
[15] 秦永松, 赵林城. 两总体分位数差异的经验似然比置信区间. 数学年刊(中文版), 1997, 18A(6):687-694(Qin Y S, Zhao L C. Empirical likelihood ratio confidence interval of quantile difference between two populations. Annals of Mathematics, 1997, 18A(6):687-694)
[16] 王历容, 秦永松, 白云霞, 黎玲. 缺失数据下两线性模型中响应变量分位数差异的经验似然置信区间. 工程数学学报, 2010, 27(3):463-478(Wang L R, Qin Y S, Bai Y X, Li L. Empirical likelihood confldence intervals for quantile difierences of response variables in two linear regression models with missing data. Chinese Journal of Engineering Mathematics, 2010, 27(3):463-478)
[17] 王历容, 秦永松, 白云霞. 分数填补下两总体分位数差异的经验似然置信区间. 应用数学学报, 2012, 1:138-155(Wang L R, Qin Y S, Bai Y X. Empirical likelihood confldence intervals for quantile difierences of two populations under fractional imputation. Acta Mathematicae Applicatae Sinica, 2012, 1:138-155)
[18] Hettmansperger T P. The ranked-set sample sign test. Journal of Nonparametric Statistics, 1995, 4(3):263-270
[19] Presnell B, Bohn L L. U-statistics and imperfect ranking in ranked set sampling. Journal of Nonparametric Statistics, 1999, 10(2):111-126
[20] Ozturk O, Wolfe D A. Optimal allocation procedure in ranked set sampling for unimodal and multimodal distributions. Environmental and Ecological Statistics, 2000, 7(4):343-356
[21] Wang Y G, Zhu M. Optimal sign tests for data from ranked set samples. Statistics and Probability Letters, 2005, 72(1):13-22
[22] 宋向东, 董晓芳. 基于排序集样本的最优挑选设计. 数理统计与管理, 2007, 26(4):656-661(Song X D, Dong X F. Optimal selective design based on a ranked set smple. Journal of Applied Statistics and Management, 2007, 26(4):656-661)
[23] David H A, Nagaraja H N. Order Statistics (Third Edition). New York:John Wiley & Sone Lnc., 2003
[24] Mackinnon W J. Table for both the sign test and distribution-free confidence intervals of the median for sample sizes to 1000. Journal of the American Statistical Association, 1964, 59(307):935-956
[25] Hettmansperger T P, Sheather S J. Confidence intervals based on interpolated order statistics. Statistics and Probability Letters, 1986, 4(2):75-79
[26] Sheather S J, Mckean J W. A comparison of testing and confidence interval methods for the median. Statistics and Probability Letters, 1987, 6(1):31-36
[27] Nyblom J. Note on interpolated order statistics. Statistics and Probability Letters, 1992, 14(2):129-131
[28] Beran R, Hall P. Interpolated nonparametric prediction intervals and confidence intervals. Journal of the Royal Statistical Society:Series B (Methodological), 1993, 55(3):643-652
[29] Papadatos N. Intermediate order statistics with applications to nonparametric estimation. Statistics and Probability Letters, 1995, 22(3):231-238
[30] Hutson A D. Calculating nonparametric confidence intervals for quantiles using fractional order statistics. Journal of Applied Statistics, 1999, 26(3):343-353
[31] Walsh J E. Some significance tests for the median which are valid under very general conditions. The Annals of Mathematical Statistics, 1949a, 20(1):64-81
[32] Walsh J E. Applications of some significance tests for the median which are valid under very general conditions. Journal of the American Statistical Association, 1949, 44(247):342-355
[33] Tukey J W. The simplest signed rank tests. Report No. 17, Statistical Research Group, Princeton University, 1946
[34] Brown B M. Symmetric quantile averages and related estimators. Biometrika, 1981, 68(1):235-242
[35] Krewski D. Distribution-free confidence intervals for quantile intervals. Journal of the American Statistical Association, 1976, 71(354):420-422
[36] Wilks S S. Mathematical Statistics. New York:John Wiley & Sone Lnc., 1962
[37] Reiss R D, Ruschendorf L. On Wilks' distribution-free confidence intervals for quantile intervals. Journal of the American Statistical Association, 1976, 71(356):940-944
[38] Sathe Y S, Lingras S R. Bounds for the confidence coefficients of outer and inner confidence intervals for quantile Intervals. Journal of the American Statistical Association, 1981, 76(374):473-475
[39] Gillespie J A, Srinivasan R. Simultaneous outer and inner tolerance limits for screening and descriptive purposes. Communications in Statistics-Theory and Methods, 1993, 22(7):2057-2066
[40] Barakat H M. On the confidence region for the bivariate co-ordinate-wise quantiles of the continuous bivariate distribution functions. Statistics and Probability Letters, 2002, 56(1):37-43
[41] Bristol D R. Distribution-free confidence intervals for the difference between quantiles. Statistica Neerlandica, 1990, 44(2):87-90
[42] Breth M. Quantile estimation and probability coverages. Australian Journal of Statistics, 1980, 22(2):207-211
[43] Steck G P. Rectangle probabilities for uniform order statistics and the Probability that the empirical distribution function lies between two distribution functions. The Annals of Mathematical Statistics, 1971, 42(1):1-11
[44] Farrell R H. Bounded length confidence intervals for the p-point of a distribution function, III. The Annals of Mathematical Statistics, 1966, 37(3):586-592
[45] Mccarthy P J. Stratified sampling and distribution-free confidence intervals for a median. Journal of the American Statistical Association, 1965, 60(311):772-783
[46] Loynes R M. Some aspects of the estimation of quantiles. Journal of the Royal Statistical Society:Series B (Methodological), 1966, 28(3):497-512
[47] Sedransk J, Meyer J. Confidence intervals for the quantiles of a finite population:simple random and stratified simple random sampling. Journal of the Royal Statistical Society:Series B (Methodological), 1978, 40(2):239-252
[48] Philip S, Sedransk J. Lower bounds for confidence coefficients for confidence intervals for finite population quantiles. Communications in Statistics-Theory and Methods, 1983, 12(12):1329-1344
[49] Meyer J. Outer and inner confidence intervals for finite population quantile intervals. Journal of the American Statistical Association, 1987, 82(397):201-204
[50] Wilks S S. Statistical prediction with special reference to the problem of tolerance limits. The Annals of Mathematical Statistics, 1942, 13(4):400-409
[51] Robbins H. On distribution-free tolerance limits in random sampling. The Annals of Mathematical Statistics, 1944, 15(4):214-216
[52] Breth M. Simultaneous tolerance limits and a unified approach to some nonparametric theory. Australian and New Zealand Journal of Statistics, 1981, 23(3):314-327
[53] McIntyre G A. A method for unbiased selective sampling, using ranked sets. Australian journal of agricultural research, 1952, 3(4):385-390

[1]雷庆祝, 秦永松. 强混合样本下非参数回归函数的经验似然推断[J]. 应用数学学报, 2019, 42(2): 179-196.
[2]张香云, 程维虎. 二项-广义 Pareto 复合极值分布模型的统计推断 [J]. 应用数学学报(英文版), 2012, (3): 560-572.
[3]赵旭, 程维虎, 李婧兰. 广义Pareto分布的广义有偏概率加权矩估计方法[J]. 应用数学学报(英文版), 2012, (2): 321-329.
[4]王历容, 秦永松, 白云霞. 分数填补下两总体分位数差异的经验似然置信区间[J]. 应用数学学报(英文版), 2012, (1): 138-155.
[5]陈家鼎, 陈奇志. 关于洛伦兹曲线和基尼系数的的统计推断[J]. 应用数学学报(英文版), 2011, 34(3): 385-399.
[6]赵桂梅, 徐兴忠. 两个Weibull分布尺度参数比的推断[J]. 应用数学学报(英文版), 2011, 34(2): 283-295.
[7]赵桂梅, 徐兴忠. 两个Weibull分布尺度参数比的推断[J]. 应用数学学报(英文版), 2011, 34(1): 283-295.
[8]叶仁道, 王松桂. 线性混合模型中方差分量的广义推断[J]. 应用数学学报(英文版), 2010, 33(1): 1-11.
[9]林赛攀、邹新堤. 线性次序统计量和线性秩统计量的渐近正态性[J]. 应用数学学报(英文版), 2006, 29(1): 146-153.
[10]周勇, 吴国富. 左删失右截断数据的分位数的固定宽度序贯置信区间估计[J]. 应用数学学报(英文版), 2002, 25(2): 204-215.
[11]郑耀辉. 一类强正相依随机变量列部分和次序统计量的矩不等式与收敛定理[J]. 应用数学学报(英文版), 2001, 24(2): 168-176.
[12]祁永成. 截断和大数律的收敛速度[J]. 应用数学学报(英文版), 1995, 18(2): 273-286.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14919
相关话题/统计 应用数学 经验 数学 分数