删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

强混合样本下非参数回归函数的经验似然推断

本站小编 Free考研考试/2021-12-27

强混合样本下非参数回归函数的经验似然推断 雷庆祝, 秦永松广西师范大学数学与统计学院, 桂林 541004 Empirical Likelihood for Nonparametric Regression Functions under Strong Mixing Samples LEI Qingzhu, QIN YongsongCollege of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China
摘要
图/表
参考文献
相关文章(7)
点击分布统计
下载分布统计
-->

全文: PDF(371 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要在回归变量和响应变量的观察值为强混合随机变量序列时,本文利用分组经验似然方法构造了非参数回归函数的经验似然置信区间,同时通过模拟研究了本文提出的方法的优良性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2014-08-13
PACS:O212.7
基金资助:国家自然科学基金(11671102,61662007),广西科学基金(2016GXNSFAA3800163,2017GXNSFAA198349)资助项目

引用本文:
雷庆祝, 秦永松. 强混合样本下非参数回归函数的经验似然推断[J]. 应用数学学报, 2019, 42(2): 179-196. LEI Qingzhu, QIN Yongsong. Empirical Likelihood for Nonparametric Regression Functions under Strong Mixing Samples. Acta Mathematicae Applicatae Sinica, 2019, 42(2): 179-196.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I2/179


[1] Rosenblatt M. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist., 1956, 27:832-837
[2] Doukhan P. Mixing:Properties and Examples. New-York:Springer-Verlag, 1994
[3] Chanda K C. Strong mixing properties of linear stochastic processes. Journal of Applied Probability, 1974, 11:401-408
[4] Gorodetskii V V. On the strong mixing properties for linear processes. Theory of Probability and Its Applications, 1997, 22:413-441
[5] Withers C S. Conditions for linear processes to be strong-mixing. Z. Wahrsch. Verw. Crebiete., 1981, 57:477-480
[6] Pham T D, Tran L T. Some mixing properties of time series models. Stochastic Processes and their Applications, 1985, 19:297-303
[7] Genon-Catahot V, Jeantheau T, Laredo C. Stochastic volatility models as hidden Markov models and statistical applications. Bernoulli, 2000, 6(6):1051-1079
[8] Chen S X, Qin Y. Empirical Likelihood confidence interval for a local linear smoother. Biometrika, 2000, 87:946-953
[9] Chen S X, Qin Y. Coverage accuracy of confidence intervals in nonparametric regression. Acta Mathematicae Applicatae Sinica, 2003, 19(3):387-396
[10] Kitamura Y. Empirical likelihood methods with weakly dependent processes. Ann. Statist, 1997, 25:2084-2102
[11] Chen S X, Wong C M. Smoothed block empirical likelihood for quantiles of weakly dependent processes. Statistica Sinica, 2009, 19:71-81
[12] Chuang C S, Chan N H. Empirical likelihood for autoregressive models with applications to unstable time series. Statistica Sinica, 2002, 12:387-407
[13] Masry E, Fan J. Local polynomial estimation of regression functions for mixing processes. Scandinavian J. Statist, 1997, 24:165-179
[14] Lei Q, Qin Y. Empirical likelihood for quantiles under negatively associated samples. Journal of Statistical Planning and Inference, 2011, 141:1325-1332
[15] Qin Y, Li Y. Empirical likelihood for linear models under negatively associated errors. J. Multi. Anal, 2011, 102:153-163
[16] Qin Y, Li Y, Lei Q. Empirical likelihood for probability density functions under negatively associated samples. J. Statist. Plann. Inference 2011, 141:373-381
[17] Chen S X, Keilegom I V. A review on empirical likelihood methods for regression. Test, 2009, 18:415-447
[18] Roussas GG. Asymptotic normality of the kernel estimate of a probability density function under association. Statist. Probab. Lett, 2000, 50:1-12
[19] Deo C M. A note on empirical processes of strong-mixing sequences. Ann. Probab, 1973, 1:870-875
[20] Volkonskii V A, Rozanov Y A. Some limit theorems for random functions I. Theor. Prob. Appl, 1959, 4:178-197
[21] Shao Q, Yu H. Weak convergence or weighted empirical processes of dependent sequences. Ann. Prob, 1996, 24:2098-2127

[1]黎玲, 李华英, 秦永松. 强混合样本情形含附加信息时总体分位数的估计[J]. 应用数学学报, 2017, 40(5): 781-800.
[2]王历容, 秦永松, 白云霞. 分数填补下两总体分位数差异的经验似然置信区间[J]. 应用数学学报(英文版), 2012, (1): 138-155.
[3]陈家鼎, 陈奇志. 关于洛伦兹曲线和基尼系数的的统计推断[J]. 应用数学学报(英文版), 2011, 34(3): 385-399.
[4]赵桂梅, 徐兴忠. 两个Weibull分布尺度参数比的推断[J]. 应用数学学报(英文版), 2011, 34(2): 283-295.
[5]赵桂梅, 徐兴忠. 两个Weibull分布尺度参数比的推断[J]. 应用数学学报(英文版), 2011, 34(1): 283-295.
[6]叶仁道, 王松桂. 线性混合模型中方差分量的广义推断[J]. 应用数学学报(英文版), 2010, 33(1): 1-11.
[7]周勇, 吴国富. 左删失右截断数据的分位数的固定宽度序贯置信区间估计[J]. 应用数学学报(英文版), 2002, 25(2): 204-215.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14601
相关话题/应用数学 经验 统计 序列 数据