摘要在Banach空间中研究一类具有记忆型非瞬时脉冲和非局部条件的半线性积分-微分发展方程mild解的存在性和唯一性,利用算子半群理论、Banach压缩原理和Krasnoselskii's不动点定理给出主要结果的证明,进一步得到该问题强解存在的充分条件.与以往具有非瞬时脉冲的发展方程模型相比,本文所讨论的双参数发展系统问题更具有复杂性,所获结论推广和发展了已有的相关结果.最后,通过例子给出了主要结果的一个应用. |
[1] | Chauhan A, Dabas J. Local and global existence of mild solution to an impulsive fractional functional integro-differential equation with nonlocal condition. Commun Nonlinear Sci Numer Simulat, 2014, 19:821-829 | [2] | Radhakrishnan B, Tamilarasi M. Existence of solutions for quasilinear random impulsive neutral differential evolution equation. Arab Journal of Mathematical Sciences, 2018, 24(2):235-246 | [3] | Anguraj A, Karthikeyan P, Rivero M, Trujillo J J. On new existence results for fractional integrodifferential equations with impulsive and integral conditions. Computers and Mathematics with Applications, 2014, 66:2587-2594 | [4] | Cui J, Yan L T. Existence results for impulsive neutral second-order stochastic evolution equations with nonlocal conditions. Mathematical and Computer Modelling, 2013, 57:2378-2387 | [5] | Zeng B, Liu Z H. Existence results for impulsive feedback control systems. Nonlinear Analysis:Hybrid Systems, 2019, 33:1-16 | [6] | Diallo M A, Ezzinbi K, Séne A. Impulsive integro-differential equations with nonlocal conditions in Banach spaces. Transactions of A. Razmadze Mathematical Institute, 2017, 171:304-315 | [7] | Hernández E, O'Regan D. On a new class of abstract impulsive differential equations. Proceedings of American Mathematic- al Society, 2013, 141(5):1641-1649 | [8] | Pierri M, O'Regan D, Rolnik V. Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Applied Mathematics and Computation, 2013, 219:6743-6749 | [9] | Lin Z, Wang J R, Wei W. Multipoint BVPs for generalized impulsive fractional differential equations. Applied Mathematics and Computation, 2015, 258:608-616 | [10] | Colao V, Muglia L, Xu H-K. An existence result for a new class of impulsive functional differential equations with delay. Journal of Mathematical Analysis and Applications, 2016, 441:668-683 | [11] | Yu X L,Wang J R. Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces. Commun Nonlinear Sci Numer Simulat, 2015, 22:980-989 | [12] | Meray A, Pandey D N. Existence of mild solutions for fractional non-instantaneous impulsive integrodifferential equations with nonlocal conditions. Arab Journal of Mathematical Sciences, 2018, https://doi.org/10.1016/j.ajmsc.2018.11.002. | [13] | Liu J H, Song X Q, Zhang L T. Existence of anti-periodic mild solutions to semilinear nonautonomous evolution equations. Journal of Mathematical Analysis and Applications, 2015, 425:295-306 | [14] | Chen P Y, Zhang X P, Li Y X. Study on fractional non-autonomous evolution equations with delay. Computers and Mathematics with Applications, 2017, 73:794-803 | [15] | Henríquez H R, Poblete V, Pozo J C. Mild solutions of non-autonomous secong order problems with nonlocal initial conditions. Journal of Mathematical Analysis and Applications, 2014, 412:1064-1083 | [16] | Fu X L, Liu X B. Existence of periodic solutions for abstract neutral non-autonomous equations with infinite delay. Journal of Mathematical Analysis and Applications, 2007, 325:249-267 | [17] | Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York:Springer-Verlag, 1983 | [18] | 白占兵. 分数阶微分方程边值问题理论及应用. 北京:中国科学技术出版社, 2012(Bai Z B. Theory and Application of Boundary Value Problems for Fractional Differential Equations. Beijing:China Science and Technology Press, 2012) | [19] | Friedman A. Partial Differential Equations. New York:Holt, Rinehat and Winston, 1969 |
[1] | 樊菁菁, 贺飞, 路宁. 模糊距离空间中几类非线性压缩不动点定理[J]. 应用数学学报, 2021, 44(3): 427-439. | [2] | 杨炜明, 廖书, 方芳. 带有非局部扩散项的霍乱传染病模型行波解的存在性[J]. 应用数学学报, 2021, 44(3): 440-458. | [3] | 许秋滨. 图像去噪的ROF模型的几个新的算法[J]. 应用数学学报, 2019, 42(4): 470-481. | [4] | 董佳华, 冯育强, 蒋君. 非线性隐式分数阶微分方程耦合系统初值问题[J]. 应用数学学报, 2019, 42(3): 356-370. | [5] | 冯立杰. 具有分数阶导数的积分边值问题正解的存在性[J]. 应用数学学报, 2019, 42(2): 254-265. | [6] | 魏玲, 孟庆余. 一类非线性随机四阶抛物型方程的解的p阶矩指数稳定性[J]. 应用数学学报, 2018, 41(5): 632-641. | [7] | 肖建中, 王智勇, 居加敏. 向量半线性二阶脉冲泛函微分包含的C1-可解性[J]. 应用数学学报, 2017, 40(6): 820-840. | [8] | 王亚平, 刘立山, 吴永洪. 有Riemann-Stieltjes积分边界条件的非线性奇异分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2017, 40(5): 752-769. | [9] | 朴勇杰. ω-连通空间上弱φ-映射族的不动点,重合点和聚合不动点[J]. 应用数学学报, 2017, 40(3): 461-470. | [10] | 贾婷婷, 聂华, 张瑜. 一类具有外加毒素的非均匀恒化器模型分析[J]. 应用数学学报, 2017, 40(3): 377-399. | [11] | 张福珍, 刘文斌, 王刚. 一类非线性分数阶微分方程多点积分边值问题解的存在性[J]. 应用数学学报, 2017, 40(2): 229-239. | [12] | 胡良根, 张怀念. 奇异Sturm-Liouville特征值问题正解的全局分歧和存在性[J]. 应用数学学报, 2016, 39(5): 677-688. | [13] | 林红霞, 李珊. 管道中三维不可压缩Navier-Stokes方程组解的正则性准则[J]. 应用数学学报, 2016, 39(4): 523-530. | [14] | 李耀红, 张海燕. 一类分数阶微分方程积分边值问题的可解性[J]. 应用数学学报, 2016, 39(4): 547-554. | [15] | 朴勇杰. 度量空间上满足拟收缩条件的两个集值映射的公共不动点[J]. 应用数学学报, 2016, 39(3): 373-381. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14924
模糊距离空间中几类非线性压缩不动点定理樊菁菁1,贺飞2,路宁21电子科技大学基础与前沿研究院,成都610054;2内蒙古大学数学科学学院,呼和浩特010021SomeFixedPointTheoremsforNonlinearContractionsinFuzzyMetricSpacesFANJin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27偏正态数据下混合非线性位置回归模型的统计诊断曹幸运,聂兴锋,吴刘仓昆明理工大学理学院,昆明650093StatisticalDiagnosisofMixtureNonlinearLocationRegressionModelwithSkew-NormalDataCAOXingyun,NIEXingf ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具年龄结构和非局部扩散的三种群Lotka-Volterra竞争合作系统行波解稳定性张丽娟,霍振香,任晴晴,王福昌防灾科技学院,廊坊065201StabilityoftheTravelingWaveSolutionsforThreeSpeciesLotka-VolterraCompetitive-co ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有非紧条件的拟线性Schrdinger-Poisson系统非平凡解的存在性陈丽珍1,冯晓晶2,李刚31.山西财经大学应用数学学院,太原,030006;2.山西大学数学科学学院,太原,030006;3.扬州大学数学科学学院,扬州,225002TheExistenceofNontrivia ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双参数奇摄动非线性抛物型系统的广义尖层解冯依虎1,2,侯磊2,莫嘉琪31.亳州学院电子与信息工程系,亳州236800;2.上海大学数学系,上海200436;3.安徽师范大学数学与统计学院,芜湖241003TheGeneralizedSpikeLayerSolutiontoSingularPertur ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时标上二阶拟线性延迟阻尼动态系统的动力学行为分析李继猛1,杨甲山21.邵阳学院理学院,邵阳422004;2.梧州学院大数据与软件工程学院,梧州543002DynamicalBehaviorofSecond-orderQuasilinearDelayDampedDynamicEquationsonTi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27本质上是Banach空间闭凸子集的凸度量空间旷华武贵州大学数学与统计学院,贵阳550025ConvexMetricSpaceswhichAreEssentiallyClosedConvexSubsetsofBanachSpacesKUANGHuawuCollegeofMathematicsandSt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类具有多重时滞的分数阶中立型微分系统的相对可控性杨礼昌,蒋威,盛家乐,刘婷婷,MusarrtNawaz安徽大学数学科学学院,合肥230601RelativeControllabilityofFractionalNeutralSystemwithMultipleDelaysYANGLichang,J ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分数阶线性退化微分系统有限时间镇定性问题王盼盼,张志信,蒋威安徽大学数学科学学院,合肥230601Finite-timeStabilizabilityofFractionalLinearSingularDifferentialSystemWANGPanpan,ZHANGZhixin,JIANGWei ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Klein-Gordon-Maxwell系统的无穷多变号解张鲁豫华北水利水电大学数学与统计学院,郑州450011InfinitelyManySign-changingSolutionsfortheNonlinearKlein-Gordon-MaxwellSystemZHANGLuyuSchoolof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|