删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类非瞬时脉冲发展方程解的存在性

本站小编 Free考研考试/2021-12-27

一类非瞬时脉冲发展方程解的存在性 范虹霞1, 汪婷婷21 兰州交通大学数理学院, 兰州 730070;
2 陕西师范大学杨凌实验中学, 咸阳 712100 Existence of Solutions for a Class of Non-instantaneous Impulsive Evolution Equations FAN Hongxia1, WANG Tingting21 School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China;
2 Shaanxi Normal University Yangling Experimental Middle School, Xianyang 712100, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(335 KB) HTML (0 KB)
输出: BibTeX | EndNote (RIS)
摘要在Banach空间中研究一类具有记忆型非瞬时脉冲和非局部条件的半线性积分-微分发展方程mild解的存在性和唯一性,利用算子半群理论、Banach压缩原理和Krasnoselskii's不动点定理给出主要结果的证明,进一步得到该问题强解存在的充分条件.与以往具有非瞬时脉冲的发展方程模型相比,本文所讨论的双参数发展系统问题更具有复杂性,所获结论推广和发展了已有的相关结果.最后,通过例子给出了主要结果的一个应用.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-06-28
PACS:O175.15
基金资助:国家自然科学基金(11561040)资助项目.

引用本文:
范虹霞, 汪婷婷. 一类非瞬时脉冲发展方程解的存在性[J]. 应用数学学报, 2021, 44(4): 542-552. FAN Hongxia, WANG Tingting. Existence of Solutions for a Class of Non-instantaneous Impulsive Evolution Equations. Acta Mathematicae Applicatae Sinica, 2021, 44(4): 542-552.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I4/542


[1] Chauhan A, Dabas J. Local and global existence of mild solution to an impulsive fractional functional integro-differential equation with nonlocal condition. Commun Nonlinear Sci Numer Simulat, 2014, 19:821-829
[2] Radhakrishnan B, Tamilarasi M. Existence of solutions for quasilinear random impulsive neutral differential evolution equation. Arab Journal of Mathematical Sciences, 2018, 24(2):235-246
[3] Anguraj A, Karthikeyan P, Rivero M, Trujillo J J. On new existence results for fractional integrodifferential equations with impulsive and integral conditions. Computers and Mathematics with Applications, 2014, 66:2587-2594
[4] Cui J, Yan L T. Existence results for impulsive neutral second-order stochastic evolution equations with nonlocal conditions. Mathematical and Computer Modelling, 2013, 57:2378-2387
[5] Zeng B, Liu Z H. Existence results for impulsive feedback control systems. Nonlinear Analysis:Hybrid Systems, 2019, 33:1-16
[6] Diallo M A, Ezzinbi K, Séne A. Impulsive integro-differential equations with nonlocal conditions in Banach spaces. Transactions of A. Razmadze Mathematical Institute, 2017, 171:304-315
[7] Hernández E, O'Regan D. On a new class of abstract impulsive differential equations. Proceedings of American Mathematic- al Society, 2013, 141(5):1641-1649
[8] Pierri M, O'Regan D, Rolnik V. Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Applied Mathematics and Computation, 2013, 219:6743-6749
[9] Lin Z, Wang J R, Wei W. Multipoint BVPs for generalized impulsive fractional differential equations. Applied Mathematics and Computation, 2015, 258:608-616
[10] Colao V, Muglia L, Xu H-K. An existence result for a new class of impulsive functional differential equations with delay. Journal of Mathematical Analysis and Applications, 2016, 441:668-683
[11] Yu X L,Wang J R. Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces. Commun Nonlinear Sci Numer Simulat, 2015, 22:980-989
[12] Meray A, Pandey D N. Existence of mild solutions for fractional non-instantaneous impulsive integrodifferential equations with nonlocal conditions. Arab Journal of Mathematical Sciences, 2018, https://doi.org/10.1016/j.ajmsc.2018.11.002.
[13] Liu J H, Song X Q, Zhang L T. Existence of anti-periodic mild solutions to semilinear nonautonomous evolution equations. Journal of Mathematical Analysis and Applications, 2015, 425:295-306
[14] Chen P Y, Zhang X P, Li Y X. Study on fractional non-autonomous evolution equations with delay. Computers and Mathematics with Applications, 2017, 73:794-803
[15] Henríquez H R, Poblete V, Pozo J C. Mild solutions of non-autonomous secong order problems with nonlocal initial conditions. Journal of Mathematical Analysis and Applications, 2014, 412:1064-1083
[16] Fu X L, Liu X B. Existence of periodic solutions for abstract neutral non-autonomous equations with infinite delay. Journal of Mathematical Analysis and Applications, 2007, 325:249-267
[17] Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York:Springer-Verlag, 1983
[18] 白占兵. 分数阶微分方程边值问题理论及应用. 北京:中国科学技术出版社, 2012(Bai Z B. Theory and Application of Boundary Value Problems for Fractional Differential Equations. Beijing:China Science and Technology Press, 2012)
[19] Friedman A. Partial Differential Equations. New York:Holt, Rinehat and Winston, 1969

[1]樊菁菁, 贺飞, 路宁. 模糊距离空间中几类非线性压缩不动点定理[J]. 应用数学学报, 2021, 44(3): 427-439.
[2]杨炜明, 廖书, 方芳. 带有非局部扩散项的霍乱传染病模型行波解的存在性[J]. 应用数学学报, 2021, 44(3): 440-458.
[3]许秋滨. 图像去噪的ROF模型的几个新的算法[J]. 应用数学学报, 2019, 42(4): 470-481.
[4]董佳华, 冯育强, 蒋君. 非线性隐式分数阶微分方程耦合系统初值问题[J]. 应用数学学报, 2019, 42(3): 356-370.
[5]冯立杰. 具有分数阶导数的积分边值问题正解的存在性[J]. 应用数学学报, 2019, 42(2): 254-265.
[6]魏玲, 孟庆余. 一类非线性随机四阶抛物型方程的解的p阶矩指数稳定性[J]. 应用数学学报, 2018, 41(5): 632-641.
[7]肖建中, 王智勇, 居加敏. 向量半线性二阶脉冲泛函微分包含的C1-可解性[J]. 应用数学学报, 2017, 40(6): 820-840.
[8]王亚平, 刘立山, 吴永洪. 有Riemann-Stieltjes积分边界条件的非线性奇异分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2017, 40(5): 752-769.
[9]朴勇杰. ω-连通空间上弱φ-映射族的不动点,重合点和聚合不动点[J]. 应用数学学报, 2017, 40(3): 461-470.
[10]贾婷婷, 聂华, 张瑜. 一类具有外加毒素的非均匀恒化器模型分析[J]. 应用数学学报, 2017, 40(3): 377-399.
[11]张福珍, 刘文斌, 王刚. 一类非线性分数阶微分方程多点积分边值问题解的存在性[J]. 应用数学学报, 2017, 40(2): 229-239.
[12]胡良根, 张怀念. 奇异Sturm-Liouville特征值问题正解的全局分歧和存在性[J]. 应用数学学报, 2016, 39(5): 677-688.
[13]林红霞, 李珊. 管道中三维不可压缩Navier-Stokes方程组解的正则性准则[J]. 应用数学学报, 2016, 39(4): 523-530.
[14]李耀红, 张海燕. 一类分数阶微分方程积分边值问题的可解性[J]. 应用数学学报, 2016, 39(4): 547-554.
[15]朴勇杰. 度量空间上满足拟收缩条件的两个集值映射的公共不动点[J]. 应用数学学报, 2016, 39(3): 373-381.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14924
相关话题/应用数学 分数 空间 统计 系统