删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

变系数导热方程的Robin系数反演问题

本站小编 Free考研考试/2021-12-27

变系数导热方程的Robin系数反演问题 刘翻丽1, 解金鑫2, 杨涛21 陕西师范大学杨凌实验中学, 咸阳 712000;
2 陕西师范大学杨凌实验中学, 咸阳 712000 Robin Coefficient Inversion Problem of Variable Coefficient Heat Conduction Equation LIU Fanli1, Xie Jinxin2, Yang Tao21 Shanxi Normal University Yang Ling Experimental Middle School, Xianyang 7120000, China;
2 Department of Mathematics, Lanzhou Jiao tong University, Lanzhou 730070, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(461 KB) HTML (0 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究基于非局部边界附加条件下,一类变系数抛物型方程的Robin系数确定问题,这里的Robin系数仅与时间相关.首先给出了变分公式,并利用变分公式证明了解的唯一性,其次给出了时间离散模型,基于线性离散化的变分形式,导出了一系列先验估计,证明了弱解的存在性,并对其进行了误差分析.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-04-02
PACS:O175.26
基金资助:国家自然科学基金(10571169,10731010),国家重点基础研究发展计划(2007CB814902)以及湖北省高等学校优秀中青年科技创新团队项目经费(03BA85)资助项目.

引用本文:
刘翻丽, 解金鑫, 杨涛. 变系数导热方程的Robin系数反演问题[J]. 应用数学学报, 2021, 44(4): 574-588. LIU Fanli, Xie Jinxin, Yang Tao. Robin Coefficient Inversion Problem of Variable Coefficient Heat Conduction Equation. Acta Mathematicae Applicatae Sinica, 2021, 44(4): 574-588.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I4/574


[1] 陈清华, 徐曼曼, 庞立, 刘泽功, 关维娟. 第一类边界条件下的松散煤体非稳态传热反问题研究. 上海交通大学学报, 2014, 48(12):1809-1814(CHEN Q H, XU M M, PANG L, LIU Z G, GUAN W J. Study on the unsteady inverse heat conduction problem of loose coal bulk in first kind boundary condition. Journal of Shanghai Jiaotong University, 2014, 48(12):1809-1814)
[2] 常师贞, 张学仁. 半直线上第一类边界条件下波动方程混合问题的公式解. 太原工业大学学报, 1987(02):96-105(CHANG S Z, ZHANG X R. The formula solution of mixed wave equation problem underboundary condition on half line. Journal of Taiyuan University of Technology, 1987(02):96-105)
[3] 赵围围, 杨国英. 带Dirichlet边界的椭圆方程组正解的存在性和不存在性. 河北北方学院学报(自然科学版), 2010, 26(06):1-3(ZHAO W W, YANG G Y. Existence and Nonexistence of Positive Solutions to Elliptic Equation System with Dirichlet Boundary Value. Journal of Hebei North University (Natural Science Edition), 2010, 26(06):1-3)
[4] 郝娅楠, 黄永艳. 带有Neumann边界的Kirchhoff问题无穷多径向解的存在性. 云南民族大学学报(自然科学版), 2018, 27(03):212-215(HAO Y N, HUANG Y Y. Existence of infinitely many radial solutions to a Kirchhoff equation with Neumann boundary conditions. Journal of Yunnan Minzu University (Natural Sciences Edition), 2018, 27(03):212-215)
[5] 胡妤涵. 具有Neumann边界的耦合非线性薛定谔方程组能量估计. 河南科技大学学报(自然科学版), 2016, 37(01):9-6-100+10(HU Y H. Energy Estimate for Coupled Nonlinear Schrodinger Equations with Neumann Boundary. Journal of He nan University of Science Technology (Natural Science), 2016, 37(01):96-100+10)
[6] 张强, 曾艳, 李桂花, 张黔川. 带Neumann边界条件的Extended Fisher-Kolmogorov系统的定态分歧. 四川师范大学学报(自然科学版), 2014, 37(02):188-191(ZHANG Q, ZENG Y, LI G H, ZHANG Q C. Steady State Bifurcation of Extended Fisher-Kolmogorov System with Neumann Boundary Condition. Journal of Sichuan Normal University (Natural Science), 2014, 37(02):188-191)
[7] 孙仁斌. 带奇异项的拟线性抛物方程组在第二类边界条件下解的猝灭. 中南民族大学学报(自然科学版), 2018, 37(02):133-136(SUN R B. Quenching of Solutions of Quasilinear Parabolic System with Singular Term under Second Boundary Conditions. Journal of South-central University for Nationalities (Natural Science Edition), 2018, 37(02):133-136)
[8] 张慧萍. 一类抛物型方程Robin边界系数的反演. 东南大学, 2015(ZHANG H P. Inversion of Boundary Coefficients of a Parabolic Equation Robin. Southeast University, 2015)
[9] 张寒苏. 热传导方程系统边界Robin系数的反演. 东南大学, 2017(ZHANG H S. Inversion of Robin coefficients on the boundary of heat conduction equation system. Southeast University, 2017)
[10] 丁胜培, 杨宏奇. Robin反问题的TV正则化. 中山大学学报(自然科学版), 2010, 49(03):24-27+41(DING S P, YANG H Q. TV regularization of the Robin inverse problem. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(03):24-27+41)
[11] 师晋红, 陈文, 傅卓佳. 边界粒子法结合正则化技术求解Robin反问题. 计算力学学报, 2014, 31(06):694-701(SHI J H, CHEN W, FU Z J. Boundary particle method coupled with regularization technique for Robin inverse problem. Chinese Journal of Computational Mechanics, 2014, 31(06):694-701)
[12] Kostin B A. The inverse problem of recovering the source in aparabolic equation under a condition of nonlocal observation. Sbornik:Mathematics, 2013, 204(10):1391-1434
[13] Huzyk N M. Nonlocal Inverse Problem for a Parabolic Equation with Degeneration. Ukrainian Mathematical Journal, 2013, 65(6):847-863
[14] Sabitov K B, Sidorov S N. Inverse problem for degenerate parabolic-hyperbolic equation with nonlocal boundary condition. Russian Mathematics.2015, 59(1):39-50
[15] Anderson D R. Existence of three solutions for a first-order problem with nonlinear nonlocal boundary conditions. Journal of Mathematical Analysis Applications, 2013, 408(1):318-323
[16] Hao T C, Cong F Z. An efficient method for solving a class of nonlocal boundary value problems and error estimate. Applied Mathematics Letters, 2017, 72:42-49
[17] Yevick D, Thomson D J. Nonlocal boundary conditions for finite-difference parabolic equation solvers. Journal of the Acoustical Society of America, 1999, 106(1):143-150
[18] Slodicka M, Van Keer R. 2000 Determination of the convective transfer coefficient in elliptic problems from a nonstandard boundary condition Simulation. Modelling, and Numerical Analysis, SIMONA, 2000ed J Mary ska, M T uma and J Sembera (Liberec:Technical University of Liberec), 13-20
[19] Slodicka M, Keer R V. Recovery of the convective transfer coefficient in parabolic problems from a non-standard boundary condition. International Conference on Applied Theoretical Mathematics. World Scientific and Engineering Society Press, 2000
[20] Chaabane S, Jaoua M. Identification of Robincoefficients by the means of boundary measurements. Inverse Problems, 1999, 15(6):1425-1438

[1]解金鑫, 徐森, 刘翻丽, 任建龙. 一类确定波动方程势函数的反问题[J]. 应用数学学报, 2019, 42(5): 670-683.
[2]李志广, 康淑瑰. 一类退化抛物变分不等式问题解的存在性和唯一性[J]. 应用数学学报, 2018, 41(3): 289-304.
[3]俞建, 彭定涛. 大多数单调变分不等式具有唯一解[J]. 应用数学学报, 2017, 40(4): 481-488.
[4]贾婷婷, 聂华, 张瑜. 一类具有外加毒素的非均匀恒化器模型分析[J]. 应用数学学报, 2017, 40(3): 377-399.
[5]张福珍, 刘文斌, 王刚. 一类非线性分数阶微分方程多点积分边值问题解的存在性[J]. 应用数学学报, 2017, 40(2): 229-239.
[6]王军礼, 龚六堂, 连汝续. 初值间断的可压缩Navier-Stokes方程弱解的存在性[J]. 应用数学学报, 2017, 40(1): 121-135.
[7]马力, 王兢. 能量不等式和薛定谔流弱解的唯一性[J]. 应用数学学报, 2016, 39(2): 223-228.
[8]李功胜, 贾现正, 孙春龙, 杜殿虎. 对流弥散方程线性源项系数反演的变分伴随方法[J]. 应用数学学报, 2015, 38(6): 1001-1015.
[9]覃燕梅, 孔花, 罗丹, 冯民富. BBM方程的全离散混合有限元方法[J]. 应用数学学报, 2015, 38(4): 597-609.
[10]向建林, 张亮, 赵维锐. γ>2时欧拉-泊松方程组平衡解的存在唯一性[J]. 应用数学学报(英文版), 2014, 37(4): 601-608.
[11]田德建, 江龙, 石学军. 具有拟Hölder连续生成元的倒向随机微分方程的可积解[J]. 应用数学学报(英文版), 2013, 36(5): 783-790.
[12]苏李君, 王全九, 秦新强, 曾辰. 二维非饱和土壤水分运动方程的径向基配点差分法[J]. 应用数学学报(英文版), 2013, 36(2): 337-349.
[13]郭慧玲, 郭真华. 一维粘性液体-气体两相流模型自由边值问题全局强解存在唯一性[J]. 应用数学学报(英文版), 2013, (1): 62-81.
[14]李晓静, 陈绚青, 鲁世平. 非线性项依赖一阶导数共振情形下二阶三点BVP解的存在唯一性[J]. 应用数学学报(英文版), 2012, (2): 375-380.
[15]林爱红, 夏宁茂. 由Lévy过程驱动的倒向双重随机微分方程在推广Bihari条件下解的存在唯一性[J]. 应用数学学报(英文版), 2011, 34(1): 81-95.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14926
相关话题/应用数学 陕西师范大学 统计 东南大学 系统