摘要本文研究了两个广义短脉冲方程的Bäcklund变换.利用互反变换和连带广义短脉冲方程,构造了这两个广义短脉冲方程的即涉及因变量又涉及自变量的Bäcklund变换.基于Bäcklund变换,导出了相应的非线性叠加公式,并给出了广义短脉冲方程的一些精确解. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-08-06 | | 基金资助:国家自然科学基金(11905110,11871471),广西自然科学基金(2018GXNSFBA050020),广西高校中青年教师科研基础能力提升项目(2019KY0417)资助. |
[1] | Brunelli J. C. The bi-Hamiltonian structure of the short pulse equation. Phys. Lett. A, 2006, 353: 475–478 | [2] | Matsuno Y. Periodic solutions of the short pulse model equation. J. Math. Phys., 2008, 49: 073508 | [3] | Sakovich A, Sakovich S. The short pulse equation is integrable. J. Phys. Soc. Jpn., 2005, 74: 239–241 | [4] | Matsuno Y. Multiloop soliton and multibreather solutions of the short pulse model equation. J. Phys. Soc. Jpn., 2007, 76: 084003 | [5] | Schäfer T, Wayne C E. Propagation of ultra-short optical pulses in cubic nonlinear media. Physica D, 2004, 196: 90–105 | [6] | Rabelo M L. On equations which describe pseudospherical surfaces. Stud. Appl. Math., 1989, 81: 221–248 | [7] | Matsuno Y. A novel multi-component generalization of the short pulse equation and its multisoliton solutions. J. Math. Phys., 2011, 52: 123702 | [8] | Sakovich S. Transformation and integrability of a generalized short pulse equation. Commun. Nonlinear Sci. Numer. Simul., 2016, 39: 21–28 | [9] | Franca G S, Gomes J F, Zimerman A H. The higher grading structure of the WKI hierarchy and the two-component short pulse equation. J. High Energy Phys., 2012, 2012: 120 | [10] | Hone A N W, Novikov V, Wang J P. Generalizations of the short pulse equation. Lett. Math. Phys., 2018, 108: 927–947 | [11] | Rogers C, Shadwick W F. Bäcklund transformations and their applications. New York: Academic Press, 1982 | [12] | Gu C, Hu H, Zhou Z. Darboux transformation in soliton theory and its geometric applications. Shanghai: Shanghai Science and Technology Press, 2005 | [13] | Rogers C, Schief W. Bäcklund and Darboux transformations-geoemtry and modern applications in soliton theory. Cambridge: Cambridge University Press, 2002 | [14] | Levi D, Benguria R. Bäcklund transformations and nonlinear differential difference equations. Proc. Natl. Acad. Sci. USA, 1980, 77: 5025–5027 | [15] | Suris Y B. The Problem of Integrable Discretization: Hamiltonian Approach (Progress in Mathematics vol 219). Basel: Birkhäuser, 2003 | [16] | Levi D. Nonlinear differential difference equations as Bäcklund transformations. J. Phys. A: Math. Gen., 1981, 14: 1083–1098 | [17] | Hietarinta J, Joshi N, Nijhoff F W. Discrete systems and integrability. Cambriage: Cambriage University Press, 2016 | [18] | Rasin A G, Schiff J. The Gardner method for symmetries. J. Phys. A: Math. Theor., 2013, 46: 155202 | [19] | Rasin A G, Schiff J. Bäcklund transformations for the Camassa-Holm equation J. Nonlinear Sci., 2017, 27: 45–69 | [20] | Wang G H, Liu Q P, Mao H. The modified Camassa-Holm equation: Bäcklund transformations and nonlinear superposition formulae. J. Phys. A: Math. Theor., 2020, 53: 294003 | [21] | Levi D, Ragnisco O. Non-isospectral deformations and Darboux transformations for the third-order spectral problem. Inverse Problems, 1988, 4: 815–828 | [22] | Leble S B, Ustinov N V. Third order spectral problems: reductions and Darboux transformations. Inverse Problems, 1994, 10: 617–633 | [23] | Matsuno Y. Parametric solutions of the generalized short pulse equations. J. Phys. A: Math. Theor., 2020, 53: 105202 |
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14910
偏正态数据下混合非线性位置回归模型的统计诊断曹幸运,聂兴锋,吴刘仓昆明理工大学理学院,昆明650093StatisticalDiagnosisofMixtureNonlinearLocationRegressionModelwithSkew-NormalDataCAOXingyun,NIEXingf ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具年龄结构和非局部扩散的三种群Lotka-Volterra竞争合作系统行波解稳定性张丽娟,霍振香,任晴晴,王福昌防灾科技学院,廊坊065201StabilityoftheTravelingWaveSolutionsforThreeSpeciesLotka-VolterraCompetitive-co ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有非紧条件的拟线性Schrdinger-Poisson系统非平凡解的存在性陈丽珍1,冯晓晶2,李刚31.山西财经大学应用数学学院,太原,030006;2.山西大学数学科学学院,太原,030006;3.扬州大学数学科学学院,扬州,225002TheExistenceofNontrivia ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双参数奇摄动非线性抛物型系统的广义尖层解冯依虎1,2,侯磊2,莫嘉琪31.亳州学院电子与信息工程系,亳州236800;2.上海大学数学系,上海200436;3.安徽师范大学数学与统计学院,芜湖241003TheGeneralizedSpikeLayerSolutiontoSingularPertur ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时标上二阶拟线性延迟阻尼动态系统的动力学行为分析李继猛1,杨甲山21.邵阳学院理学院,邵阳422004;2.梧州学院大数据与软件工程学院,梧州543002DynamicalBehaviorofSecond-orderQuasilinearDelayDampedDynamicEquationsonTi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类具有多重时滞的分数阶中立型微分系统的相对可控性杨礼昌,蒋威,盛家乐,刘婷婷,MusarrtNawaz安徽大学数学科学学院,合肥230601RelativeControllabilityofFractionalNeutralSystemwithMultipleDelaysYANGLichang,J ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分数阶线性退化微分系统有限时间镇定性问题王盼盼,张志信,蒋威安徽大学数学科学学院,合肥230601Finite-timeStabilizabilityofFractionalLinearSingularDifferentialSystemWANGPanpan,ZHANGZhixin,JIANGWei ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Klein-Gordon-Maxwell系统的无穷多变号解张鲁豫华北水利水电大学数学与统计学院,郑州450011InfinitelyManySign-changingSolutionsfortheNonlinearKlein-Gordon-MaxwellSystemZHANGLuyuSchoolof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27异构多智能体系统的非凸输入约束一致性黄辉1,莫立坡2,曹显兵21.广东财经大学统计与数学学院,广州510320;2.北京工商大学数学与统计学院,北京100048ConsensusofHeterogeneousMulti-agentSystemswithNonconvexInputConstraint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27任意初态下非线性不确定系统的迭代学习控制李国军1,2,陈东杰2,韩一士2,许中石21.浙江工业大学信息工程学院,杭州310023;2.浙江警察学院公共基础部,杭州310053IterativeLearningControlwithArbitraryInitialStatesforNonlinearS ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|