删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

两个广义短脉冲方程的Bäcklund变换及其应用

本站小编 Free考研考试/2021-12-27

两个广义短脉冲方程的Bäcklund变换及其应用 毛辉南宁师范大学数学与统计学院, 南宁 530001 On two Generalized Short Pulse Equations: BÄcklund Transformations and Applications MAO HuiSchool of Mathematics and Statistics, Nanning Normal University, Nanning 530001, China
摘要
图/表
参考文献
相关文章(2)
点击分布统计
下载分布统计
-->

全文: PDF(519 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了两个广义短脉冲方程的Bäcklund变换.利用互反变换和连带广义短脉冲方程,构造了这两个广义短脉冲方程的即涉及因变量又涉及自变量的Bäcklund变换.基于Bäcklund变换,导出了相应的非线性叠加公式,并给出了广义短脉冲方程的一些精确解.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-08-06
PACS:37K10
35Q58
基金资助:国家自然科学基金(11905110,11871471),广西自然科学基金(2018GXNSFBA050020),广西高校中青年教师科研基础能力提升项目(2019KY0417)资助.

引用本文:
毛辉. 两个广义短脉冲方程的Bäcklund变换及其应用[J]. 应用数学学报, 2021, 44(3): 340-354. MAO Hui. On two Generalized Short Pulse Equations: BÄcklund Transformations and Applications. Acta Mathematicae Applicatae Sinica, 2021, 44(3): 340-354.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I3/340


[1] Brunelli J. C. The bi-Hamiltonian structure of the short pulse equation. Phys. Lett. A, 2006, 353: 475–478
[2] Matsuno Y. Periodic solutions of the short pulse model equation. J. Math. Phys., 2008, 49: 073508
[3] Sakovich A, Sakovich S. The short pulse equation is integrable. J. Phys. Soc. Jpn., 2005, 74: 239–241
[4] Matsuno Y. Multiloop soliton and multibreather solutions of the short pulse model equation. J. Phys. Soc. Jpn., 2007, 76: 084003
[5] Schäfer T, Wayne C E. Propagation of ultra-short optical pulses in cubic nonlinear media. Physica D, 2004, 196: 90–105
[6] Rabelo M L. On equations which describe pseudospherical surfaces. Stud. Appl. Math., 1989, 81: 221–248
[7] Matsuno Y. A novel multi-component generalization of the short pulse equation and its multisoliton solutions. J. Math. Phys., 2011, 52: 123702
[8] Sakovich S. Transformation and integrability of a generalized short pulse equation. Commun. Nonlinear Sci. Numer. Simul., 2016, 39: 21–28
[9] Franca G S, Gomes J F, Zimerman A H. The higher grading structure of the WKI hierarchy and the two-component short pulse equation. J. High Energy Phys., 2012, 2012: 120
[10] Hone A N W, Novikov V, Wang J P. Generalizations of the short pulse equation. Lett. Math. Phys., 2018, 108: 927–947
[11] Rogers C, Shadwick W F. Bäcklund transformations and their applications. New York: Academic Press, 1982
[12] Gu C, Hu H, Zhou Z. Darboux transformation in soliton theory and its geometric applications. Shanghai: Shanghai Science and Technology Press, 2005
[13] Rogers C, Schief W. Bäcklund and Darboux transformations-geoemtry and modern applications in soliton theory. Cambridge: Cambridge University Press, 2002
[14] Levi D, Benguria R. Bäcklund transformations and nonlinear differential difference equations. Proc. Natl. Acad. Sci. USA, 1980, 77: 5025–5027
[15] Suris Y B. The Problem of Integrable Discretization: Hamiltonian Approach (Progress in Mathematics vol 219). Basel: Birkhäuser, 2003
[16] Levi D. Nonlinear differential difference equations as Bäcklund transformations. J. Phys. A: Math. Gen., 1981, 14: 1083–1098
[17] Hietarinta J, Joshi N, Nijhoff F W. Discrete systems and integrability. Cambriage: Cambriage University Press, 2016
[18] Rasin A G, Schiff J. The Gardner method for symmetries. J. Phys. A: Math. Theor., 2013, 46: 155202
[19] Rasin A G, Schiff J. Bäcklund transformations for the Camassa-Holm equation J. Nonlinear Sci., 2017, 27: 45–69
[20] Wang G H, Liu Q P, Mao H. The modified Camassa-Holm equation: Bäcklund transformations and nonlinear superposition formulae. J. Phys. A: Math. Theor., 2020, 53: 294003
[21] Levi D, Ragnisco O. Non-isospectral deformations and Darboux transformations for the third-order spectral problem. Inverse Problems, 1988, 4: 815–828
[22] Leble S B, Ustinov N V. Third order spectral problems: reductions and Darboux transformations. Inverse Problems, 1994, 10: 617–633
[23] Matsuno Y. Parametric solutions of the generalized short pulse equations. J. Phys. A: Math. Theor., 2020, 53: 105202

[1]毛辉, 张孟霞. 两个(2+1)-维超对称系统的Bäcklund变换和Lax对[J]. 应用数学学报, 2019, 42(5): 712-720.
[2]魏小然, 薛玲玲. Bell多项式在经典Boussinesq方程中的应用[J]. 应用数学学报(英文版), 2013, 36(4): 727-737.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14910
相关话题/应用数学 广西 统计 系统 基础