删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类非对称Cucker-Smale模型的直线型编队

本站小编 Free考研考试/2021-12-27

一类非对称Cucker-Smale模型的直线型编队 吴俊滔, 陈茂黎, 王晓国防科技大学文理学院, 长沙 410073 Linear Formation for a Cucker-Smale Model with Asymmetric Influence WU Juntao, CHEN Maoli, WANG XiaoCollege of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
摘要
图/表
参考文献
相关文章(7)
点击分布统计
下载分布统计
-->

全文: PDF(1235 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要针对具有两部分粒子簇数目悬殊较大的多粒子群的聚集与直线编队问题,研究了一类具有非对称影响函数和直线编队驱动力的Cucker-Smale模型的动力学行为.通过构造能力函数,建立微分不等式和原系统的投影系统等方法,获得了此类多粒子群同时形成集群与直线编队的充分条件.研究结果表明,在集群条件下,多粒子群能够形成集群并在预设的任意方向上实现直线编队,数值仿真进一步验证了研究结果的正确性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-12-17
PACS:O193
基金资助:国家自然科学基金(No.11671011)资助项目.

引用本文:
吴俊滔, 陈茂黎, 王晓. 一类非对称Cucker-Smale模型的直线型编队[J]. 应用数学学报, 2020, 43(6): 966-983. WU Juntao, CHEN Maoli, WANG Xiao. Linear Formation for a Cucker-Smale Model with Asymmetric Influence. Acta Mathematicae Applicatae Sinica, 2020, 43(6): 966-983.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2020/V43/I6/966


[1] Reynolds C W. Flocks, herds and schools:a distributed behavioral model. ACM SIGGRAPH Computer Graphics, 1987, 21(4):25-34
[2] Vicsek T, Czirók A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 1995, 75(6):1226-1229
[3] Cucker F, Smale S. Emergent behavior in flocks. IEEE Transactions on Automatic Control, 2007, 52(5):852-862
[4] Cucker F, Smale S. On the mathematics of emergence. Japanese Journal of Mathematics, 2007, 2(1):197-227
[5] Ha S Y, Liu J G. A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Communications in Mathematical Sciences, 2009, 7(2):297-325
[6] Shen J. Cucker-Smale Flocking under Hierarchical Leadership. SIAM Journal on Applied Mathematics, 2008, 68(3):694-719
[7] Li Z, Xue X. Cucker-Smale Flocking under Rooted Leadership with Fixed and Switching Topologies. Siam Journal on Applied Mathematics, 2010, 70(7):3156-3174
[8] Li Z, Ha S Y, Xue X. Emergent phenomena in an ensemble of Cucker-Smale particles under joint rooted leadership. Mathematical Models & Methods in Applied Sciences, 2014, 24(07):1389-1419
[9] Ru L, Li Z, Xue X, et al. Cucker-Smale flocking with randomly failed interactions. Journal of The Franklin Institute-engineering and Applied Mathematics, 2015, 352(3):1099-1118
[10] Cho J, Ha S, Huang F, et al. Emergence of bi-cluster flocking for the Cucker-Smale model. Mathematical Models and Methods in Applied Sciences, 2016, 26(06):1191-1218
[11] Dong J G, Qiu L. Flocking of the Cucker-Smale Model on General Digraphs. IEEE Transactions on Automatic Control, 2017, 62(10):5234-5239
[12] Ru L, Xue X. Multi-cluster flocking behavior of the hierarchical Cucker-Smale model. Journal of the Franklin Institute-engineering and Applied Mathematics, 2017, 354(5):2371-2392
[13] Cucker F, Dong J. Avoiding Collisions in Flocks. IEEE Transactions on Automatic Control, 2010, 55(5):1238-1243
[14] Chen M, Li X, Wang X, et al. Flocking and collision avoidance of a Cucker-Smale type system with singular weights. Journal of Applied Analysis and Computation, 2019, 10(1):140-152
[15] Liu Y, Wu J. Flocking and asymptotic velocity of the Cucker-Smale model with processing delay. Journal of Mathematical Analysis and Applications, 2014, 415(1):53-61
[16] Wang X, Wang L, Wu J, et al. Impacts of time delay on flocking dynamics of a two-agent flock model. Communications in Nonlinear Science and Numerical Simulation, 2019:80-88
[17] Chen M, Wang X. Flocking dynamics for multi-agent system with measurement delay. Mathematics and Computers in Simulation, 2020, 171:187-200
[18] Motsch S, Tadmor E. A New Model for Self-organized Dynamics and Its Flocking Behavior. Journal of Statistical Physics, 2011, 144(5):923-947
[19] 刘一, 随机环境下两类群体动力学模型的大时间行为分析, 哈尔滨工业大学博士论文, 2018, 15-18 (Liu Y. Analysis of large time behavior of two kinds of stachastic group dynimics models. Dissertation for the Doctoral Degree in Science, Harbin Institute of Technology, 2018, 15-18)
[20] Li X, Liu Y, Wu J, et al. Flocking and Pattern Motion in a Modified Cucker-Smale Model. Bulletin of the Korean Mathematical Society, 2016, 53(5):1327-1339
[21] Barbǎlat I. Systèmes d'équations Différentielles d'Oscillations Non Linéaires. Académie de la République Populaire Roumaine, Revue de Mathématiques Pures et Appliquées, 1959, 4(2):267-270

[1]王文涛, 刘福窑, 陈娓. 具有非单调反馈的随机Mackey-Glass造血模型[J]. 应用数学学报, 2020, 43(5): 865-874.
[2]陈娟, 黄振坤. 带有Hebbian学习型和比例延迟的二阶网络的有限时间稳定性[J]. 应用数学学报, 2019, 42(5): 614-628.
[3]孟益民, 黄立宏, 郭上江. 具分布时滞双向联想记忆神经网络周期解的存在性及全局稳定性[J]. 应用数学学报, 2018, 41(3): 369-387.
[4]周辉, 王文, 周宗福. 具非线性收获项和S-型时滞Lasota-Wazewska模型的概周期解[J]. 应用数学学报, 2017, 40(3): 471-480.
[5]宋海涛, 刘胜强. 具有一般复发现象的疾病模型的全局稳定性[J]. 应用数学学报, 2017, 40(1): 37-48.
[6]周辉, 周宗福. S-型分布时滞的细胞神经网络的概周期解[J]. 应用数学学报(英文版), 2013, 36(3): 521-531.
[7]赵文强, 李扬荣. 随机耗散Camassa-Holm方程的吸引子[J]. 应用数学学报(英文版), 2012, (1): 73-87.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14832
相关话题/应用数学 系统 统计 细胞 比例