删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

带有Hebbian学习型和比例延迟的二阶网络的有限时间稳定性

本站小编 Free考研考试/2021-12-27

带有Hebbian学习型和比例延迟的二阶网络的有限时间稳定性 陈娟, 黄振坤集美大学理学院, 厦门 361021 Finite-time Stability of Second-order Networks with Hebbian-type Learning and Proportional Delays CHEN Juan, HUANG ZhenkunSchool of Siences, Jimei University, Xiamen 361021
摘要
图/表
参考文献
相关文章(5)
点击分布统计
下载分布统计
-->

全文: PDF(400 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了一类带有Hebbian学习型和比例延迟的二阶网络有限时间稳定性问题.通过微分不等式方法得到了一个全新的结果来保证系统的有限时间稳定性,同时建立了广义指数同步准则.所给出全新的充分条件推广并补充了已有文献的结果,且可应用于大多数的神经网络系统.最后,给出的例子验证所得结果的有效性和可行性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-09-08
PACS:O193
基金资助:国家自然科学基金(61573005),福建省自然科学基金(2018J01417,2019J01330),福建省教育厅(JT180264)资助项目.

引用本文:
陈娟, 黄振坤. 带有Hebbian学习型和比例延迟的二阶网络的有限时间稳定性[J]. 应用数学学报, 2019, 42(5): 614-628. CHEN Juan, HUANG Zhenkun. Finite-time Stability of Second-order Networks with Hebbian-type Learning and Proportional Delays. Acta Mathematicae Applicatae Sinica, 2019, 42(5): 614-628.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I5/614


[1] Moulay E, Dambrine M, Yeganefar N, Perruquetti W. Finite-time stability and stabilization of time-delay systems. Systems Control Letters, 2008, 57(7):561-566
[2] Yang R, Wang Y. Finite-time stability and stabilization of a class of nonlinear time-delay systems. SIAM J. Control Optim., 2012, 50(5):3113-3131
[3] Yang R, Wang Y. Finite-time stability analysis and H control for a class of nonlinear time-delay Hamiltonian systems. Automatica, 2013, 49:390-401
[4] Hien L V. An explicit criterion for finite-time stability of linear nonautonomous systemswith delays. Applied Mathematics Letters, 2014, 30(4):12-18
[5] Amato F, Ariola M, Cosentino C. Finite-time control of discrete-time linear systems:Analysis and design conditions. Automatica, 2010, 46(5):919-924
[6] Garcia G, Tarbouriech S, Bernussou J. Finite-time stabilization of linear time-varying continuous systems. IEEE Transactions on Automatic Control, 2009, 54(2):364-369
[7] Xiao Q, Zeng Z G. Lagrange stability for T-S fuzzy memristive neural networks with time-varying delays on time scales. IEEE Transactions on Fuzzy Systems, 2018, 26(3):1091-1103
[8] Xiao Q, Huang Z K, Zeng Z G. Passivity analysis of memristor-based inertial neural networks with discrete and distributed delays. IEEE Transactions on Systems Man and Cybernetics:Systems, 2019, 49(2):375-385
[9] Song X L, Zhao P, Xu Z W, Peng J. Global asymptotic stability of CNNs with impulses and multiproportional delays. Mathematical Methods in the Applied Sciences, 2016, 39(4):722-733
[10] Huang Z K, Bin H H, Cao J D, Wang B Y. Synchronizing neural networks with proportional delays based on a class of q-type allowable time scales. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8):3418-3428
[11] Huang Z K, Cao J D, Li J M, Bin H H. Quasi-synchronization of neural networks with parameter mismatches and delayed impulsive controller on time scales. Nonlinear Analysis:Hybrid Systems, 2019, 33:104-115
[12] Kamp Y, Hasler M. Recursive neural networks for associative memory. New York:Wiley, 1990
[13] Kosmatopoulos E B, Christodoulou M A. Structural properties of gradient recurrent high order neural networks. IEEE Transactions on Circuits and Systems I!I:Analog and Digital, Signal Processing, 1995, 42(9):592-603
[14] Kosmatopoulos E B, Polycarpou M M, Christodoulou M A, Ioannou P A. High order neural network structures for identification of dynamical systems. IEEE Transactions on Neural Networks, 1995, 6(2):422-431
[15] Liu X, Teo K L, Xu B. Exponential stability of impulsive high-order Hopfield type neural networks with time varying delays. IEEE Transactions on Neural Networks, 2005, 16(6):1329-1339
[16] Pei J, Xu D, Yang Z, Zhu W. Stability analysis of second order neural networks with time delays. Lecture Notes in Computer Science, Vol. 3496, Springer, Berlin, 2005, 241-246
[17] Xu B, Liu X, Liao X. Global exponential stability of high order Hopfield type neural networks. Applied Mathematics Computation, 2006, 174(1):98-116
[18] Gopalsamy K. Learning dynamics and stability in networks with fuzzy synapses. Dynamic Systems and Applications, 2006, 15:657-671
[19] Gopalsamy K. Learning dynamics in second order networks. Nonlinear Analysis:RealWorld Applications, 2007, 8(2):688-698
[20] Huang Z K, Feng C H, Sannay M, Ye J L. Multistable learning dynamics in second-order neural networks with time-varying delays. International Journal of Computer Mathematics, 2011, 88(7):1327-1346
[21] Song Q, Yang X, Li C. Stability analysis of nonlinear fractional-order systems with variable-time impulses. Journal of the Franklin Institute, 2017, 354(7):2959-2978
[22] Pecora L M, Carroll T L. Synchronization in chaotic system. Phys. Rev. Lett., 1990, 64(8):821-824
[23] Cheng S, Ji J C, Zhou J. Fast synchronization of directionally coupled chaotic systems. Applied Mathematical Modelling, 2013, 37(1-2):127-136
[24] Ye Z Y, Deng C B. Adaptive synchronization to a general non-autonomous chaotic system and its applications. Nonlinear Analysis:Real World Application, 2012, 13(2):840-849
[25] Hien L V, Doan T S. Finite-time stability of a class of non-autonomous neural networks with heterogeneous proportional delays. Applied Mathematics and Computation, 2015, 251:14-23
[26] Liu B W. Finite-time stability of a class of CNNs with heterogeneous proportional delays and oscillating leakage coefficients. Neural Processing Letters, 2017, 45(1):109-119
[27] Kosko B. Neural networks and fuzzy systems. New Delhi:Prentice-Hall, 1992
[28] Amari S I. Competitive and cooperative aspects in dynamics of neural excitation and self-organization. Lecture Notes in Biomathematics, Berlin:Springer, 1982, 45:1-28
[29] Amari S I. Mathematical theory of neural learning. New Generation Computing, 1991, 8(4):281-294
[30] Meyer-Baese A, Ohl F, Scheich H. Singular perturbation analysis of competitive neural networks with different time scales. Neural Comput., 1996, 8:545-563
[31] Meyer-Baese A, Pilyugin S S, Chen Y. Global exponential stability of competitive neural networks with different time scales. IEEE Trans. Neural Networks, 2003, 14:716-719
[32] Lu H, He Z. Global exponential stability of delayed competitive neural networks with different time scales. Neural Networks, 2005, 18:243-250
[33] Song Q, Yu Q, Zhao Z. Dynamics of complex-valued neural networks with variable coefficients and proportional delays. Neurocomputing, 2018, 275:2762-2768
[34] Song Q, Shu H, Zhao Z. Lagrange stability analysis for complex-valued neural networks with leakage delay and mixed time-varying delays. Neurocomputing, 2017, 244:33-41

[1]孟益民, 黄立宏, 郭上江. 具分布时滞双向联想记忆神经网络周期解的存在性及全局稳定性[J]. 应用数学学报, 2018, 41(3): 369-387.
[2]周辉, 王文, 周宗福. 具非线性收获项和S-型时滞Lasota-Wazewska模型的概周期解[J]. 应用数学学报, 2017, 40(3): 471-480.
[3]宋海涛, 刘胜强. 具有一般复发现象的疾病模型的全局稳定性[J]. 应用数学学报, 2017, 40(1): 37-48.
[4]周辉, 周宗福. S-型分布时滞的细胞神经网络的概周期解[J]. 应用数学学报(英文版), 2013, 36(3): 521-531.
[5]赵文强, 李扬荣. 随机耗散Camassa-Holm方程的吸引子[J]. 应用数学学报(英文版), 2012, (1): 73-87.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14654
相关话题/应用数学 比例 网络 统计 系统