摘要本文研究了具分布时滞的双向联想记忆神经网络的动力学性质.不需要激励函数有界性和可微性,利用重合度理论的延拓定理和Krasnosel'skii的锥不动点定理,我们获得了具分布时滞双向联想记忆神经网络模型周期解的存在性和全局指数稳定性的新结论.数值模拟的结果与我们的理论相一致. |
[1] | Kosko B. Adaptive bi-directional Associative Memories. Appl. Opt., 1987, 26(23):4947-4960 | [2] | Kosko B. Bi-directional Associative Memories. IEEE Trans. Syst. Man Cybernet., 1988, 18(1988):49-60 | [3] | Gopalsamy K, He X Z. Delay-independent stability in bidirectional associative memory networks. IEEE Trans. Neural Netw., 1994, 5:998-1002 | [4] | Rao V S H, Phaneendra B R M, Prameela V. Global dynamics of bidirectional associative memory networks with transmission delays. Differential Equations Dynam. Systems, 1996, 4(4):453-471 | [5] | Rao V S H, Phaneendra B R M. Dynamics of bidirectional associative memory networks with processing delays. Nonlinear Dyn. Syst. Theory, 2002, 2:79-102 | [6] | Chen A, Huang L, Liu Z, Cao J. Periodic bidirectional associative memory neural networks with distributed delays. J. Math. Anal. Appl., 2006, 317:80-102 | [7] | Li Y. Existence and stability of periodic solution for BAM neural networks with distributed delays. Appl. Math. Comput., 2004, 159:847-862 | [8] | Zhou T, Chen A, Zhou Y. Existence and global exponential stability of periodic solution to BAM neural networks with periodic coefficients and continuously distributed delays. Phys. Lett. A, 2005, 343:336-350 | [9] | Guo S, Huang L, Dai B, Zhang Z. Global existence of periodic solutions of BAM neural networks with variable coefficients. Phys. Lett. A, 2003, 317:97-106 | [10] | Gaines D R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Berlin:Springer-Verlag, 1977 | [11] | Lassalle J P. The stability of Dynamical System. Philadelphis:SIAM, 1976 | [12] | Berman A, Plemmons R J. Nonnegative Matrices In The Mathematical Science. New York:Academic Press, 1979 | [13] | Krasnoselskii M A. Positive Solutions of Operator Equations. Noordhoff:Gorninggen, 1964 | [14] | Royden H L. Real Analysis. New York:Macmillan Publishing Company, 1988 |
[1] | 刘炳文, 田雪梅, 杨孪山, 黄创霞. 具有非线性死亡密度和连续分布时滞的Nicholson飞蝇模型的周期解[J]. 应用数学学报, 2018, 41(1): 98-109. | [2] | 赵环环, 刘有军, 燕居让. 带分布时滞偶数阶微分方程组的振动性[J]. 应用数学学报, 2017, 40(4): 612-622. | [3] | 周辉, 王文, 周宗福. 具非线性收获项和S-型时滞Lasota-Wazewska模型的概周期解[J]. 应用数学学报, 2017, 40(3): 471-480. | [4] | 廖华英, 徐向阳, 胡启宙. 对"一类带收获率的离散时滞人口模型正周期解存在性"的探究[J]. 应用数学学报, 2016, 39(4): 598-609. | [5] | 田德生. 一类二阶时滞微分方程多个周期解的存在性[J]. 应用数学学报, 2016, 39(4): 537-546. | [6] | 廖华英, 周正. 一类带收获项的离散Lotka-Volterra合作系统的四个正周期解[J]. 应用数学学报, 2016, 39(3): 441-451. | [7] | 谢溪庄, 陈梅香. 具有分布时滞和非局部空间效应的Gilpin-Ayala竞争模型的稳定性[J]. 应用数学学报, 2016, 39(2): 213-222. | [8] | 吕小俊, 张天伟, 赵凯宏. 研究带有收获项的延迟Lotka-Volterra型区域竞争系统八个正周期解的存在性[J]. 应用数学学报, 2016, 39(2): 237-248. | [9] | 孙树林, 段晓祥. 水体富营养化状态脉冲控制系统周期解的存在性和唯一性[J]. 应用数学学报, 2016, 39(1): 138-152. | [10] | 欧伯群, 姚晓洁. 一类中立型Cohen-Grossberg神经网络概周期解的存在唯一性[J]. 应用数学学报, 2015, 38(2): 212-221. | [11] | 刘有军, 张建文, 燕居让. 带分布时滞高阶中立型微分方程非振动解的存在性[J]. 应用数学学报, 2015, 38(2): 235-243. | [12] | 李祖雄. 一类具有反馈控制的修正Leslie-Gower模型的周期解[J]. 应用数学学报, 2015, 38(1): 37-52. | [13] | 陈娟. 一类非线性Schödinger方程的Jacobi椭圆函数周期解[J]. 应用数学学报(英文版), 2014, 37(4): 656-661. | [14] | 施秀莲. 具有阻尼和Marangoni效应的KdV-KSV方程时间周期解的存在性[J]. 应用数学学报(英文版), 2014, 37(3): 527-536. | [15] | 景兰, 莫宜春. 一类泛函微分方程正周期解的存在性和多解性[J]. 应用数学学报(英文版), 2014, 37(2): 234-246. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14485
时间模上一类二阶非线性延迟动力系统的振动性分析杨甲山梧州学院信息与电子工程学院,梧州543002OscillationAnalysisofSecond-orderNonlinearDelayDynamicEquationsonTimeScalesYANGJiashanSchoolofInformat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有初态误差的高阶多智能体系统一致性跟踪李国军1,2,陈东杰2,韩一士21.浙江工业大学信息工程学院,杭州310023;2.浙江警察学院公共基础部,杭州310053ConsensusTrackingofHigh-orderMulti-agentSystemswithInitialStateError ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析王虎1,田晶磊2,孙玉琴3,于永光11.中央财经大学统计与数学学院,北京100081;2.北京交通大学理学院,北京100044;3.内蒙古大学鄂尔多斯应用技术学院,内蒙古017000StabilityAnalysisofFractionalStag ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27温储备失效和单重休假Min(N,V)-策略的M/G/1可修排队系统蔡晓丽1,唐应辉1,21.四川师范大学数学与软件科学学院,成都610068;2.四川师范大学数学与软件科学学院,成都610068M/G/1RepairableQueueingSystemwithWarmStandbyFailurean ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Keller-Segel抛物系统解的爆破现象李远飞广东财经大学华商学院,广州511300Blow-upPhenomenafortheSolutionstoaFullyParabolicKeller-SegelSystemLIYuanfeiSchoolofMathematic,SouthChinaof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非线性扰动广义NNV微分系统的孤子研究欧阳成1,陈贤峰2,莫嘉琪31.湖州师范学院理学院,湖州313000;2.上海交通大学数学系,上海200240;3.安徽师范大学数学系,芜湖241003StudyfortheSolitonofNonlinearDisturbedGeneralizedNNVDif ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27捕食者带有疾病的入侵反应扩散捕食系统的空间斑图李成林云南省红河州蒙自市红河学院数学学院,蒙自661199SpatiotemporalPatternFormationofanInvasion-diffusionPredator-preySystemwithDiseaseinthePredatorLIC ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类带收获项的离散Lotka-Volterra合作系统的四个正周期解廖华英1,周正21.南昌师范学院数学与计算机科学系,南昌330032;2.厦门理工学院应用数学学院,厦门361024FourPositivePeriodicSolutionsforaDiscreteLotka-VolterraCoo ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分数阶力学系统的正则变换理论张毅苏州科技大学土木工程学院,苏州215011TheiryofCanonicalTransformationforaFractionalMechanicalSystemZHANGYiCollegeofCivilEngineering,SuzhouUniversityofS ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27研究带有收获项的延迟Lotka-Volterra型区域竞争系统八个正周期解的存在性吕小俊1,张天伟2,赵凯宏31.云南大学旅游文化学院信息科学与技术系,丽江674199;2.昆明理工大学城市学院,昆明650051;3.昆明理工大学应用数学系,昆明650093EightPositivePeriodic ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|