删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

比例Volterra积分方程的切比雪夫谱配置法

本站小编 Free考研考试/2021-12-27

比例Volterra积分方程的切比雪夫谱配置法 郑伟珊韩山师范学院数学与统计学院, 潮州 521041 Chebyshev Spectral-collocation Method for Proportional Volterra Integral Equation ZHENG WeishanCollege of Mathematics and Statistics, Hanshan Normal University, Chaozhou 521041, China
摘要
图/表
参考文献
相关文章(1)
点击分布统计
下载分布统计
-->

全文: PDF(338 KB) HTML (0 KB)
输出: BibTeX | EndNote (RIS)
摘要采用谱配置方法研究比例Volterra积分方程的收敛性并进行数值分析.首先进行适当的变换,然后利用切比雪夫-高斯求积公式离散方程中的积分项,紧接着从理论上证明切比雪夫谱配置方法的收敛性,最后给出数值例子,数值结果表明方程的精确解与近似解之间的误差在无穷范数空间和加权的L2范数空间中均呈现指数衰减,仿真结果验证方法的可行性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-08-04
PACS:O175.29
基金资助:国家自然科学基金(11626074),广东省自然科学基金(2017A030307020)以及韩山师范学院(Z16027,2017HJGJCJY009)资助项目.

引用本文:
郑伟珊. 比例Volterra积分方程的切比雪夫谱配置法[J]. 应用数学学报, 2019, 42(3): 400-409. ZHENG Weishan. Chebyshev Spectral-collocation Method for Proportional Volterra Integral Equation. Acta Mathematicae Applicatae Sinica, 2019, 42(3): 400-409.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I3/400


[1] Brunner H. Collocation methods for Volterra integral and related functional equations. Cambridge:Cambridge University Press, 2004
[2] Kang L, Wang S, Jiang T. Hydrologic model of Volterra neural network and its application. Journal of Hydroelectric Engineering, 2006, 25(5):22-26
[3] Zhang C, Yan X. Positive solution bifurcating from zero solution in a Lotka-Volterra competitive system with cross-diffusion effects. Appl. Math. J. Chinese Univ., 2011, 25(3):342-352
[4] Tang T, Xu X, Cheng J. On spectral methods for Volterra integral equation and the convergence analysis. J. Comput. Math., 2008, 26(6):825-837
[5] Chen Y, Tang T. Spectral methods for weakly singular Volterra integral equations with smooth solutions. J. Comput. Appl. Math., 2009, 233:938-950
[6] Xie Z, Li X, Tang T. Convergence analysis of spectral Galerkin methods for Volterra type integral equations. J. Sci. Comput., 2012, 53:414-434
[7] Gu Z, Chen Y. Chebyshev spectral collocation method for Volterra integral equations. Contemporary Mathematics, 2013, 586:163-170
[8] Canuto C, Hussaini M, Quarteroni A, Zang T. Spectral method fundamentals in single domains. Berlin:Spring-Verlag, 2006
[9] Shen J, Tang T. Spectral and high-order methods with applications. Beijing:Science Press, 2006
[10] Mastroianni G, Occorsio D. Optional systems of nodes for Lagrange interpolation on bounded intervals. J. Comput. Appl. Math., 2001, 134:325-341
[11] Henry D. Geometric theory of semilinear parabolic equations. Berlin:Spring-Verlag, 1989
[12] Kufner A. Persson L. Weighted inequality of Hardy's Type. New York:World Scientific, 2003
[13] Nevai P. Mean convergence of Lagrange interpolation Ⅲ. Trans. Amer. Math. Soc., 1984, 282:669-698

[1]崔霞. Sobolev-Volterra投影与积分微分方程有限元数值分析[J]. 应用数学学报(英文版), 2001, 24(3): 441-455.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14648
相关话题/比例 空间 统计 应用数学 数学