摘要考虑到损坏率受到白噪声的干扰,本文介绍了一类具有非单调反馈的随机Mackey-Glass造血模型,用于描述其在随机环境中的动力学行为.首先,研究了在非负初值条件下全局正解的存在性和唯一性.接着,估计了解的平均最终有界性和Lyapunov指数.最后,给出了一个实例以及数值模拟以验证理论分析结果. |
[1] | Mackey MC, Glass L. Oscillation and chaos in physiological control systems. Science, 1977, 197:287-289 | [2] | Mackey MC. Mathematical models of hematopoietic cell replication and control. H.G. Othmer, F.R. Adler, M.A. Lewis, J.C. Dallon, eds. The Art of Mathematical Modelling:Case Studies in Ecology, Physiology and Biofluids, Prentice Hall, 1997, 149-178 | [3] | Mackey M, Heiden U. Dynamic diseases and bifurcations in physiological control systems. Funk. Biol. Med., 1982, 1:156-164 | [4] | Glass L, Mackey M. Mackey-Glass equation. Scholarpedia, 2010, 5(3):6908 | [5] | Berezansky L, Braverman E. Mackey-Glass equation with variable coefficients. Comput. Math. Appl., 2006, 51:1-16 | [6] | Berezansky L, Braverman E. On stability of some linear and nonlinear delay differential equations. J. Math. Anal. Appl., 2006, 314:391-411 | [7] | Berezansky L, Braverman E. Stability and linearization for differential equations with a distributed delay. Funct. Differ. Equ., 2012, 19:27-43 | [8] | Braverman E, Zhukovskiy S. Absolute and delay-dependent stability of equations with a distributed delay. Discrete Contin. Dyn. Syst. (A), 2012, 32:2041-2061 | [9] | Jiang D, Wei J. Existence of positive periodic solutions for Volterra integro-differential equations. Acta Mathematica Scientia (B), 2001, 21(4):553-560 | [10] | Wan A, Jiang D. Existence of positive periodic solutions for functional differential equations. Kyushu J. Math., 2002, 56:193-202 | [11] | Wan A, Jiang D, Xu X. A new existence theory for positive periodic solutions to functional differential equations. Comput. Math. Appl., 2004, 47:1257-1262 | [12] | 翁佩萱, 梁妙莲. 一个造血模型周期解的存在性及其性态. 应用数学, 1995, 8(4):434-439(Weng P, Liang M. Existence and stability of periodic solution in a model of hematopoiesis. Math. Appl., 1995, 8(4):434-439) | [13] | Wang W. Global exponential stability for the Mackey-Glass model of respiratory dynamics with a control term. Math. Meth. Appl. Sci., 2016, 39:606-613 | [14] | Wang X, Li Z. Erratum to:dynamics for a class of general hematopoiesis model with periodic coefficients. Appl. Math. Comput., 2008, 200(1):473-476 | [15] | Weng P. Global attractivity of periodic solution in a model of hematopoiesis. Comput. Math. Appl., 2002, 44:1019-1030 | [16] | Berezansky L, Braverman E, Idels L. Mackey-Glass model of hematopoiesis with non-monotone feedback:Stability, oscillation and control. Appl. Math. Comput., 2013, 219:6268-6283 | [17] | May R M. Stability and complexity in model ecosystems. Princeton:Princeton University Press, 1973 | [18] | Zhang J, Chen R, Nie L. Noise-enhanced stability in the time-delayed Mackey-Glass system. Indian J. Phys., 2015, 89:1321-1326 | [19] | Nguyen D. Mackey-Glass equation driven by fractional Brownian motion. Physica A:Statistical Mechanics and its Applications, 2012, 391:5465-5472 | [20] | Mao X. Stochastic differential equations and applications. Chichester:Horwood, 1997 | [21] | Zhang J, Nie L, Yu L, Zhang X. Noise and time delay induce critical point in a bistable system. Int. J. Mod. Phys. (B), 2014, 28(28):1450197 | [22] | Shu C, Nie L, Zhou Z. Stochastic resonance-like and resonance suppression-like phenomena in a bistable system with time delay and additive noise. Chinese Phys. Lett., 2012, 29(5):050506 | [23] | Nie L, Mei D. Noise and time delay:Suppressed population explosion of the mutualism system. Europhys. Lett., 2007, 79:20005 | [24] | Kloeden P E, Shardlow T. The Milstein scheme for stochastic delay differential equations without using anticipative calculus. Stoch. Anal. Appl., 2012, 30:181-202 | [25] | Wang W, Wang L, Chen W. Stochastic Nicholson's blowflies delayed differential equations. Appl. Math. Lett., 2019, 87:20-26 | [26] | Zhu Y, Wang K, Ren Y, Zhuang Y. Stochastic Nicholson's blowflies delay differential equation with regime switching. Appl. Math. Lett., 2019, 94:187-195 | [27] | Yi X, Liu G. Analysis of stochastic Nicholson-type delay system with patch structure. Appl. Math. Lett., 2019, 96:223-229 | [28] | Wang W, Shi C, Chen W. Stochastic Nicholson-type delay differential system. Int. J. Control, https://doi.org/10.1080/00207179.2019.1651941 | [29] | Wang W, Chen W. Stochastic delay differential neoclassical growth model. Adv. Difference Equ., 2019, 2019:355 |
[1] | 梁明杰, 王健. 可加Lévy噪声驱动随机微分方程的强Feller性与指数遍历性[J]. 应用数学学报, 2017, 40(2): 267-278. | [2] | 周清, 李超. 分数Vasicek利率模型下几何平均亚式期权的定价公式[J]. 应用数学学报(英文版), 2014, 37(4): 662-675. | [3] | 周少波. 马尔科夫切换型中立型随机泛函微分方程[J]. 应用数学学报(英文版), 2012, (6): 1128-1140. | [4] | 肖艳清, 邹捷中. 分数布朗运动驱动下z一致连续的BSDE解的存在性与唯一性[J]. 应用数学学报(英文版), 2012, (2): 245-251. | [5] | 黄可明. 高斯场最大值与最大模分布的某些收敛性[J]. 应用数学学报(英文版), 2000, 23(4): 625-631. | [6] | 张书年. 关于有界性的勒茹米辛型定理[J]. 应用数学学报(英文版), 1999, 22(4): 497-503. | [7] | 杨春鹏. 具有测度边值一类非线性方程解的存在性──概率处理[J]. 应用数学学报(英文版), 1999, 22(2): 215-221. | [8] | 李森林, 黄立宏. 高维系统周期解的存在性与唯一性[J]. 应用数学学报(英文版), 1996, 19(1): 115-122. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14824
一类具有多重时滞的分数阶中立型微分系统的相对可控性杨礼昌,蒋威,盛家乐,刘婷婷,MusarrtNawaz安徽大学数学科学学院,合肥230601RelativeControllabilityofFractionalNeutralSystemwithMultipleDelaysYANGLichang,J ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分数阶线性退化微分系统有限时间镇定性问题王盼盼,张志信,蒋威安徽大学数学科学学院,合肥230601Finite-timeStabilizabilityofFractionalLinearSingularDifferentialSystemWANGPanpan,ZHANGZhixin,JIANGWei ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分数阶微分方程组非振动解的存在性刘有军,赵环环,康淑瑰山西大同大学数学与统计学院,大同037009ExistenceforNonoscillatorySolutionsofSystemofFractionalDifferentialEquationsLIUYoujun,ZhaoHuanhuan,Ka ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双项时间分数阶慢扩散方程的一类高效差分方法杨晓忠,邵京,孙淑珍华北电力大学数理学院,北京102206AClassofEfficientDifferenceMethodsfortheDouble-termTimeFractionalSub-diffusionEquationYANGXiaozhong, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时间分数阶扩散方程双线性元的高精度分析樊明智,王芬玲,赵艳敏,史艳华,张亚东许昌学院数学与统计学院,许昌461000HighAccuracyAnalysisoftheBilinearElementfortheTime-FractionalDiffusionEqustionsFANMinzhi,WAN ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27病例-队列设计下长度偏差数据的比例均值剩余寿命模型的统计推断徐达1,周勇2,31.上海财经大学统计与管理学院,上海200082;2.华东师范大学经管学部交叉科学研究院及统计学院,上海200241;3.中国科学院数学与系统科学研究院,北京100190ProportionalMeanResidualLi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非线性隐式分数阶微分方程耦合系统初值问题董佳华1,冯育强2,蒋君11.武汉科技大学理学院,武汉430065;2.冶金工业过程系统科学湖北省重点实验室,武汉430081TheProximalPointIterativeAlgorithmfortheInitialValueProblemforaCoup ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有分数阶导数的积分边值问题正解的存在性冯立杰天津大学数学学院,天津300350ExistenceofPositiveSolutionsforIntegralBoundaryValueProblemswithFractionalDerivativesFENGLijieSchoolofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于分数阶滑模控制器的不确定分数阶混沌系统同步阎晓妹1,尚婷1,赵小国21.西安理工大学自动化与信息工程学院,西安710048;2.西安建筑科技大学机电工程学院,西安710055SynchronizationofUncertainFractional-orderChaoticSystemsBased ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析王虎1,田晶磊2,孙玉琴3,于永光11.中央财经大学统计与数学学院,北京100081;2.北京交通大学理学院,北京100044;3.内蒙古大学鄂尔多斯应用技术学院,内蒙古017000StabilityAnalysisofFractionalStag ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|