删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不确定参数下群体博弈均衡的存在性与通有稳定性

本站小编 Free考研考试/2021-12-27

不确定参数下群体博弈均衡的存在性与通有稳定性 赵薇, 杨辉, 吴隽永贵州大学数学与统计学院, 贵阳 550025 Existence and Generic Stability of Equilibria for Population Games with Uncertain Parameters ZHAO Wei, YANG Hui, WU JuanyongSchool of Mathematics and Statistics, Guizhou University, Guiyang 550025
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(451 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文在已知不确定参数变化范围的假设下,研究了不确定参数下群体博弈均衡的存在性与通有稳定性.首先,基于经典非合作博弈NS均衡概念提出了不确定参数下群体博弈NS均衡的定义;其次,在支付函数连续性与凸性的一定假设下,利用Ky Fan不等式证明了均衡的存在性;最后,给出了不确定参数下群体博弈模型NS均衡集通有稳定性的相关结论,运用Fort引理证明了在Baire分类的意义下,当支付函数发生扰动时,大多数不确定参数下群体博弈的NS均衡点集都是稳定的.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-04-25
PACS:O177.91
基金资助:国家自然科学基金(11271098,11861020,11761023)和贵州省科技厅自然科学基金(黔科合LH字[2016]7424,7425号)资助项目.

引用本文:
赵薇, 杨辉, 吴隽永. 不确定参数下群体博弈均衡的存在性与通有稳定性[J]. 应用数学学报, 2020, 43(4): 627-638. ZHAO Wei, YANG Hui, WU Juanyong. Existence and Generic Stability of Equilibria for Population Games with Uncertain Parameters. Acta Mathematicae Applicatae Sinica, 2020, 43(4): 627-638.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2020/V43/I4/627


[1] Nash J. Noncooperative games. Dissertation, Princeton University, Dept. Mathematics, 1950
[2] Weibull J W. Evolutionary Game Theory. Cambridge:MIT Press, 1995
[3] Sandholm W H. Population games and evolutionary dynamics. Cambridge:MIT press, 2010
[4] Sandholm W H. Large population potential games. Journal of Economic Theory, 2009, 144(4):1710-1725
[5] Blume L E. Population Games. Santa Fe Institute, 1995
[6] Lahkar R, Sandholm W H. The projection dynamic and the geometry of population games. Games and Economic Behavior, 2008, 64(2):565-590
[7] Reluga T C, Galvani A P. A general approach for population games with application to vaccination. Mathematical Biosciences, 2011, 230(2):67-78
[8] Yang G H, Yang H. Stability of weakly Pareto-Nash equilibria and Pareto-Nash equilibria for multiobjective population games. Set-Valued Var. Anal, 2017, 25:427-439
[9] Yang G H, Yang H, Song Q Q. Stability of weighted Nash equilibrium for multiobjective population games. Journal of Nonlinear Science and Applications, 2016, 9(3):4167-4176
[10] 陈莎, 杨辉, 杨光惠. 多目标群体博弈中弱Pareto完美平衡点. 贵州大学学报:自然科学版, 2016, 33(2):10-13(Chen S, Yang H, Yang G H. Existence of weakly pareto perfect equilibria for multi-objective population games. Journal of Guizhou University (Natural Sciences), 2016, 33(2):10-13)
[11] Harsanyi J C. Games with incomplete information played by "Bayesian" players:Part I. Management Science, 1968, 14(3):159-182
[12] Larbani M. Non-cooperative fuzzy games in normal form:A survey. Fuzzy Sets and Systems, 2009, 160(22):3184-3210
[13] Wang C, Tang W S, Zhao R Q. Static Bayesian games with finite fuzzy types and the existence of equilibrium. Information Sciences, 2008, 178(24):4688-4698
[14] Zhukovskii V I. Linear quadratic differential games. Naoukova Doumka:Kiev, 1994
[15] Larbani M. About the Existence of Nash-Slater Equilibrium for a Non-Cooperative Game under Uncertainty, Advances in Multiple Objective and Goal Programming. Berlin, Heidelberg:Springer 1997
[16] Larbani M, Lebbah H. A concept of equilibrium for a game under uncertainty. European J. of Operational Research, 1999, 117(1):145-156
[17] 张会娟, 张强. 不确定性下非合作博弈强Nash均衡的存在性. 控制与决策, 2010, 25(8):1251-1254(Zhang H J, Zhang Q. Existence of strong Nash equilibrium for non-cooperative games under uncertainty. Control and Decision, 2010, 25(8):1251-1254)
[18] 张会娟, 张强. 不确定性下非合作博弈简单Berge均衡的存在性. 系统工程理论与实践, 2010, 30(9):1630-1635(Zhang H J, Zhang Q. Existence of simple Berge equilibrium for non-cooperative games under uncertainty. Systems Engineering-Theory & Practice, 2010, 30(9):1630-1635)
[19] 杨哲, 蒲勇健, 郭心毅. 不确定性下多目标博弈中弱Pareto-NS均衡的存在性. 系统工程理论与实践, 2013, 33(3):660-665(Yang Z, Pu Y J, Guo X Y. On the existence of weakly Pareto-NS equilibrium points in multi-objective games under uncertainty. Systems Engineering-Theory & Practice, 2013, 33(3):660-665)
[20] 杨哲, 蒲勇健. 广义不确定性下广义博弈中NS均衡的存在性. 中国管理科学, 2013, 21(5):165-171(Yang Z, Pu Y J. Existence of NS equilibrium points in generalized games under generalized uncertainty. Chiese Journal of Management Science, 2013, 21(5):165-171)
[21] 邓喜才, 向淑文. 不确定下广义博弈强Berge均衡的存在性. 应用数学学报, 2015, 38(2):200-211(Deng X C, Xiang S W. Existence of strong Berge equilibrium for generalized non-cooperative games under uncertainty. Acta Mathematicae Applicatae Sinica, 2015, 38(2):200-211)
[22] 高静, 邬冬华, 张广. 不确定条件下n人非合作博弈均衡点集的通有稳定性. 应用数学与计算数学学报, 2014, 28(3):336-342(Gao J, Wu D H, Zhang G. Generic stability of equilibrium for n-person non-cooperative games under uncertainty. Communication on Applied Mathematics and Computation, 2014, 28(3):336-342)
[23] 王能发. 有限理性下不确定性博弈均衡的稳定性. 应用数学学报, 2017, 40(4):562-572(Wang N F. The stability of equilibrium point for uncertain game under bounded rationality. Acta Mathematicae Applicatae Sinica, 2017, 40(4):562-572)
[24] 俞建. 博弈论与非线性分析续论. 北京:科学出版社, 2011(Yu J. Game Theory and Nonlinear Analysis (Continued). Beijing:Science Press, 2011)
[25] 俞建. 博弈论与非线性分析. 北京:科学出版社, 2008(Yu J. Game Theory and Nonlinear Analysis. Beijing:Science Press, 2008)
[26] Fort Jr, M.k. Essential and nonessential fixed points. Amer. J. Math., 1950, 72(2):315-322

[1]李远飞. 非线性边界条件下高维抛物方程解的全局存在性及爆破现象[J]. 应用数学学报, 2019, 42(6): 721-735.
[2]牟晓洁, 张启敏, 王宗. 随机SIRS模型拟最优控制存在的充分条件[J]. 应用数学学报, 2019, 42(4): 442-454.
[3]李志广. 一类非线性抛物变分不等式解的存在性[J]. 应用数学学报, 2019, 42(4): 550-563.
[4]陈瑞鹏, 李小亚. 一类核反应堆数学模型正解的全局分歧[J]. 应用数学学报, 2018, 41(5): 596-608.
[5]李志广, 康淑瑰. 一类退化抛物变分不等式问题解的存在性和唯一性[J]. 应用数学学报, 2018, 41(3): 289-304.
[6]王能发. 有限理性下不确定性博弈均衡的稳定性[J]. 应用数学学报, 2017, 40(4): 562-572.
[7]张福珍, 刘文斌, 王刚. 一类非线性分数阶微分方程多点积分边值问题解的存在性[J]. 应用数学学报, 2017, 40(2): 229-239.
[8]胡良根, 张怀念. 奇异Sturm-Liouville特征值问题正解的全局分歧和存在性[J]. 应用数学学报, 2016, 39(5): 677-688.
[9]史册, 闻斌, 林静. 循环连续正交表[J]. 应用数学学报, 2016, 39(5): 786-800.
[10]王金华, 向红军. 无穷分数差分方程三点边值问题[J]. 应用数学学报, 2015, 38(6): 1029-1039.
[11]王定畅, 仇秋生. 集值优化问题广义拟近似解的性质与存在性定理[J]. 应用数学学报, 2015, 38(5): 929-943.
[12]向建林, 张亮, 赵维锐. γ>2时欧拉-泊松方程组平衡解的存在唯一性[J]. 应用数学学报(英文版), 2014, 37(4): 601-608.
[13]许生虎. 捕食者-食饵交错扩散模型解的整体存在性和一致有界性[J]. 应用数学学报(英文版), 2014, 37(4): 706-715.
[14]景兰, 莫宜春. 一类泛函微分方程正周期解的存在性和多解性[J]. 应用数学学报(英文版), 2014, 37(2): 234-246.
[15]魏君, 蒋达清, 祖力. 一维p-Laplace二阶脉冲微分方程的奇异边值问题[J]. 应用数学学报(英文版), 2013, 36(3): 414-430.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14792
相关话题/应用数学 统计 北京 分数 数学