删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

分布阶波方程全离散有限元方法的高精度分析新途径

本站小编 Free考研考试/2021-12-27

分布阶波方程全离散有限元方法的高精度分析新途径 任金城1, 石东洋21. 河南财经政法大学数学与信息科学学院, 郑州 450046;
2. 郑州大学数学与统计学院, 郑州 450001 A New Approach of High Accuracy Analysis of Fully Discrete Finite Element Method for Distributed Order Fractional Wave Equations REN Jincheng1, SHI Dongyang21. College of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou 450045, China;
2. College of Mathematics and statistics, Zhengzhou University, Zhengzhou 450001, China
摘要
图/表
参考文献
相关文章(10)
点击分布统计
下载分布统计
-->

全文: PDF(408 KB) HTML (0 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了时间分布阶波方程的全离散有限元数值逼近及其高精度误差分析的新途径.首先,基于L1公式离散Caputo时间分数阶导数,构造了时间分布阶波方程的有限元全离散格式,证明了格式的无条件稳定性.然后,利用双线性元的Ritz投影算子Rh和插值算子Ih之间的高精度误差估计,再借助于插值后处理技术得到了在全离散格式下单独利用插值或投影所无法得到的超逼近和超收敛结果.进一步地,将该方法应用于变系数分布阶波方程,也证明了格式的无条件稳定性和超收敛性.最后,对一些常见的单元作了进一步探讨.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-01-18
PACS:O242.21
基金资助:国家自然科学基金(11601119,11671369),河南省高校创新人才支持计划(18HASTIT027)以及河南财经政法大学青年拔尖人才资助计划资助项目.

引用本文:
任金城, 石东洋. 分布阶波方程全离散有限元方法的高精度分析新途径[J]. 应用数学学报, 2019, 42(3): 410-424. REN Jincheng, SHI Dongyang. A New Approach of High Accuracy Analysis of Fully Discrete Finite Element Method for Distributed Order Fractional Wave Equations. Acta Mathematicae Applicatae Sinica, 2019, 42(3): 410-424.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I3/410


[1] Diethelm K. The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics. Berlin:Springer, 2004
[2] Podlubny I. Fractional Differential Equations. Academic Press, San Diego, CA, 1999
[3] Chen W, Sun H G. Numerical algorithms for fractional differential equations:current situation and problems. Comput. Aided Engrg., 2010, 19:1-2
[4] Chen C M, Liu F W, Turner I, et al. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys., 2007, 227:886-897
[5] Sun Z Z, Wu X N. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math., 2006, 56:193-209
[6] Zhang Y N, Sun Z Z, Zhao X. Compact alternating direction implicit schemes for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal., 2012, 50:1535-1555
[7] Wang Z B, Vong S W. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys., 2014, 277:1-15
[8] Ren J C, Mao S P, Zhang J W. Fast evaluation and high accuracy finite element approximation for the time fractional subdiffusion equation, Numer. Meth. Partial Differential Equations, 2018, 34(2):705-730
[9] Ren J C, Long X N, Mao S P, Zhang J W. Superconvergence of finite element approximations for the fractional diffusion-wave equation. J. Sci. Comput., 2017, 72(3):917-935
[10] Zhao X, Zhang Z M. Superconvergence points of fractional spectral interpolation. SIAM J. Sci. Comput., 2016, 38:A598-A614
[11] Zhao X, Hu X Z, Cai W, Karniadakis G E. Adaptive finite element method for fractional differential equations using Hierarchical matrices. Comput. Methods Appl. Mech. Engrg., 2017, 325:56-76
[12] Gao G H, Sun Z Z, Zhang H W. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and it applications. J. Comput. Phy., 2014, 259:33-50
[13] Alikhanov A A. A new difference scheme for the time fractional diffusion equation. J. Comput. Phy., 2015, 280:424-438
[14] Sun Z Z, Gao G H. The difference method of fractional differential equations. Beijing:Science press, 2015
[15] Liao H L, Zhang Y N, Zhao Y, Shi H S. Stability and convergence of modified Du Fort-Frankel schemes for solving time-fractioal subfiffusion equations. J. Sci. Comput., 2014, 61:629-648
[16] Celik C, Duman M. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys., 2012, 231:1743-1750
[17] Ye H P, Liu F W, Anh V, Turner I. Numerical analysis for the time distributed order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math., 2015, 80:825-838
[18] Gao G H, Sun H W, Sun Z Z. Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys., 2015, 298:337-359
[19] Gao G H, Sun Z Z. Two alternating direction implicit difference schemes for two-Dimensional distributed-order fractional diffusion equations. J. Sci. Comput., 2016, 66:1281-1312
[20] Mashayekhia S, Razzaghi M. Numerical solution of distributed order fractional differential equations by hybrid functions. J. Comput. Phys., 2016, 315:169-181
[21] Bu W P, Xiao A G, Zeng W. Finite difference/finite element methods for distributed-order time fractional diffusion equations. J. Sci. Comput., 2017, 72:422-441
[22] Yang X H, Zhang H X, Xu D. WSGD-OSC scheme for two-dimensional distributed order fractional reaction-diffusion equation. J. Sci. Comput., 2018, 76:1502-1520
[23] Kincaid D, Cheney W. Numerical Analysis:Mathematics of Scientific Computing. Wadsworth, Belmont, CA, 1991
[24] Thomée, V. Galerkin finite element methods for parabolic problems. Springer series in computational mathematics, Sweden, 2000
[25] Lin Q, Yan N.N. The Construction and Analysis of High Efficient Elements. Hebei:Hebei University Press, 1996
[26] Shi D Y, Wang P L, Zhao Y M. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation. Appl. Math. Lett., 2014, 38:129-134
[27] Lin Q. Global error expansion and superconvergence for higher order interpolation of finite elements. J. Comp. Math., 1992, 10:286-289
[28] Shi D Y, Liang H. Superconvergence analysis and extrapolation of a new unconventional Hermite-type anisotropic rectangular element. Math. Numer. Sin., 2005, 27:369-382
[29] Chen S C, Shi D Y. Accuracy analysis for quasi-Wison element. Acta Math. Sci., 2000, 20(1):44-48
[30] Chen S C, Shi D Y. Zhao Y.C. Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes. IMA J. Numer. Anal., 2004, 24(1):77-95
[31] Shi D Y, Wang F L, Zhao Y M. Superconvergence analysis and extrapolation of quasi-Wilson nonconforming finite element method for nonlinear Sobolev equations. Acta Math. Appl. Sin., 2013, 29(2):403-414
[32] Shi D Y, Pei L F. Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations. Appl. Math. Comput., 2013, 219(17):9447-9460

[1]樊明智, 王芬玲, 赵艳敏, 史艳华, 张亚东. 时间分数阶扩散方程双线性元的高精度分析[J]. 应用数学学报, 2019, 42(4): 535-549.
[2]董佳华, 冯育强, 蒋君. 非线性隐式分数阶微分方程耦合系统初值问题[J]. 应用数学学报, 2019, 42(3): 356-370.
[3]冯立杰. 具有分数阶导数的积分边值问题正解的存在性[J]. 应用数学学报, 2019, 42(2): 254-265.
[4]石东洋, 李明浩. 二阶椭圆问题一种新格式的高精度分析[J]. 应用数学学报(英文版), 2014, 37(1): 45-58.
[5]王芬玲, 石东洋. 非线性Sine-Gordon方程Hermite型有限元新的超收敛分析及外推[J]. 应用数学学报(英文版), 2012, 35(5): 777-788.
[6]Huo Yuan DUAN, Xing CHEN, Shao You LI , Guo Ping LIANG. 一个改进的Reissner-Mindlin 矩形元[J]. 应用数学学报(英文版), 2003, 26(4): 629-637.
[7]汪继文, 刘儒勋. 浅水波方程的一种基于特征方向的Galerkin方法[J]. 应用数学学报(英文版), 2003, 26(3): 458-466.
[8]段火元, 梁国平, 马昌凤. Stokes问题的杂交-混合有限元分析[J]. 应用数学学报(英文版), 2003, 26(3): 551-565.
[9]贾二惠. 非协调区域分解Lagrange乘子法的超收敛[J]. 应用数学学报(英文版), 1999, 22(2): 204-214.
[10]岳兴业. 相场模型的非光滑初值有限元分析[J]. 应用数学学报(英文版), 1996, 19(1): 15-24.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14649
相关话题/应用数学 分数 河南财经政法大学 统计 人才