删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

新的投影混合稳定化方法在抛物问题中的应用

本站小编 Free考研考试/2021-12-27

新的投影混合稳定化方法在抛物问题中的应用 曾凤, 冯民富四川大学数学学院, 成都 610064 A New Projection-type Mixed Stabilization for the Parabolic Problem ZENG Feng, FENG MinfuCollege of Mathematics, Sichuan University, Chengdu 610064, China
摘要
图/表
参考文献(0)
相关文章(2)
点击分布统计
下载分布统计
-->

全文: PDF(858 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要针对抛物问题提出一种新的投影混合稳定化方法.该方法基于等阶的混合有限元,相比通常的局部投影稳定化方法,增加了新的投影稳定项及压力跳跃项,有效地克服了等阶有限元不满足inf-sup条件而导致的解的不稳定性,也保证了该方法不仅对连续的压力空间适用,且对不连续的压力空间亦适用.本文证明了该方法的稳定性,并给出了误差估计.最后,数值算例验证了该方法的理论分析及有效性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2014-07-10
PACS:O241.82
基金资助:国家自然科学基金(11401124)资助项目.
引用本文:
曾凤, 冯民富. 新的投影混合稳定化方法在抛物问题中的应用[J]. 应用数学学报, 2017, 40(3): 422-435. ZENG Feng, FENG Minfu. A New Projection-type Mixed Stabilization for the Parabolic Problem. Acta Mathematicae Applicatae Sinica, 2017, 40(3): 422-435.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2017/V40/I3/422


[1] Zhang L Y, Chen Z X. A Stabilized Mixed Finite Element Method for Single-phase Compressible Flow. Appl. Math., 2011, 10:1-16
[2] Polina V, Anatoli Z. A Study of Galerkin Method for the Heat Convection Equations. Appl. Math. Comput., 2011, 218(2):520-531
[3] Thomée V. Galerkin Finite Element Methods for Parabolic Problems. Göteborg:Springer-Verlag, 2000
[4] Boffi D, Buffa A, Gastaldi L. Convergence Analysis for Hyperbolic Evolution Problems in Mixed Form. Numer. Linear Algebra with Appl., 2013, 20(4):541-556
[5] Pani A K, Yuan J Y. Mixed Finite Element Method for a Strongly Damped Wave Eqution. Numer. Methods for PDEs, 2001, 17(2):105-119
[6] Xu Y C, Hu B, Xie X P, Jin-song Hu. Mixed Finite Element Analysis for Dissipative SRLW Equations with Damping Term. Appl. Math. Comput., 2012, 218:4788-4797
[7] Weng Z F, Feng X L, Zhai S Y. Analysis of Two-grid Method for Semi-linear Elliptic Equations by New Mixed Finite Element Scheme. Appl. Math. Comput., 2013, 219:4826-4835
[8] Wang J P, Ye X. New Finite Element Methods in Computational Fluid Dynamics by H (div) Elements. SIAM J Numer. Anal., 2007, 45(3):1269-1286
[9] Weng Z F, Feng X L, Peng-zhan Huang. A New Mixed Finite Element Method based on the CrankNicolson Scheme for the Parabolic Problems. Appl. Math. Model., 2012, 36(10):5068-5079
[10] Bochev P B, Dohrmann C R, Gunzburger M D. Stabilization of Low-order Mixed Finite Elements for the Stokes Equations. SIAM. J Numer. Anal., 2005, 44(1):82-101
[11] Zhu L P, Li J, Chen Z X. A New Local Stabilized Nonconforming Finite Elemment Method for Solving Stationary Navier-Stokes Equations. Comput. Appl. Math., 2011, 235:2821-2831
[12] Li J, He Y N, Chen Z X. A New Stabilized Finite Element Method for the Transient Navier-Stokes Equations. Comput. Method Appl. Mech. Engrg., 2007, 197(1-4):22-35
[13] Nafa K, Wathen A J. Local Projection Stabizied Galerkin Approximations for the Generalized Stokes Problem. Comput. Methods Appl. Mech. Engrg., 2009, 198(5):877-883
[14] Huang P Z, Feng X L, De-min Liu. A Stabilized Finite Method for the Time-dependent Stokes Equations based on Crank-Nicolson Scheme. Appl. Math. Model., 2013, 37(4):1910-1919
[15] Ganesan S, Matthies G, Tobiska L. Local Projection Stabilization of Equal Order Interpolation applied to the Stokes Problem. Math. of Comput., 2008, 77(264):2039-2060
[16] Chen G, Feng M F. A New Absolutely Stable Simplified Galerkin Least-Squares Finite Element Method Using Nonconforming Element for the Stokes Problem. Appl. Math. Comput., 2013, 219(10):5356-5366
[17] Wang K, Feng M F, He Y N. Two-level Stabilized Finite Element Method for the Transient NavierStokes Equations. Int. J. Comput. Math., 2010, 87(10):2341-2360
[18] Nafa K. Local Projection Finite Element Stabilization for Darcy Flow. Int. J. Numer. Anal. Model., 2010. 7(4):656-666
[19] Matthies G, Skrzypacz P, Tobiska L. A Unified Convergence Analysis for Local Projection Stabilizations applied to the Oseen Problem. Math. Model. Numer. Anal., 2007, 41(4):713-742
[20] Chen Z, Wang Z, Zhu L, et al. Analysis of the Pressure Projection Stabilization Method for the Darcyand Coupled Darcy-Stokes Flows. Comput. Geosci., 2013, 17(6):1079
[21] Hecht F. New Development in Freefem++. J. Numer. Math., 2012, 20(3-4):251-265

[1]白艳红, 冯民富. 非定常Stokes方程的多级增强Petrov-Galerkin低阶有限元方法[J]. 应用数学学报(英文版), 2011, 34(1): 57-72.
[2]张铁, 林延平. 一类非局部抛物问题及其数值方法[J]. 应用数学学报(英文版), 1996, 19(2): 279-289.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14336
相关话题/应用数学 空间 统计 四川大学 数学学院