删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

英汉双语者二语口语产生中音韵编码过程的同化机制

本站小编 Free考研考试/2022-01-01

辛昕, 兰天一, 张清芳()
中国人民大学心理学系, 北京 100872
收稿日期:2020-01-16出版日期:2020-12-25发布日期:2020-10-26
通讯作者:张清芳E-mail:qingfang.zhang@ruc.edu.cn

基金资助:* 北京市社会科学基金重点项目(16YYA006);中国人民大学预研委托(团队基金)人才培育类项目(18XNLG28)

Assimilation mechanisms of phonological encoding in second language spoken production for English-Chinese bilinguals

XIN Xin, LAN Tianyi, ZHANG Qingfang()
Department of Psychology, Renmin University of China, Beijing 100872, China
Received:2020-01-16Online:2020-12-25Published:2020-10-26
Contact:ZHANG Qingfang E-mail:qingfang.zhang@ruc.edu.cn






摘要/Abstract


摘要: 本研究运用事件相关电位技术, 结合时空微态分割分析法, 考察英汉双语者二语口语产生过程中音韵编码过程的同化与顺应机制。研究中采用图词干扰即时命名任务, 比较英汉双语者的汉语产生过程中音韵编码的加工单元与汉语母语者的汉语产生过程还是与英语母语者的英语产生过程的特点类似。反应时结果发现汉汉组、英汉组与英英组都出现显著的音节效应。事件相关电位的结果发现英汉双语者的汉语产生过程中出现了音素效应, 与其英语产生过程的特点类似, 音素效应在英语和汉语的产生过程中都出现在图画呈现后的200~250 ms之间, 而汉语母语者的汉语产生过程中仅发现了音节效应, 出现在250~300 ms之间。时空微态分割分析发现英汉双语者在汉语产生的音韵编码过程与英语母语者在英语产生过程所对应的脑电微态成分相同, 仅在持续时间上存在显著差异; 其微态成分不同于汉语母语者的汉语产生过程。上述结果表明英汉双语者汉语产生的音韵编码过程与英语作为母语时的产生过程相似, 而与汉语作为母语时的产生过程不同。英汉双语者的汉语产生过程采用了母语同化机制。



图1汉汉组、英汉组和英英组图画命名的潜伏期(* p < 0.05)
图1汉汉组、英汉组和英英组图画命名的潜伏期(* p < 0.05)


表1三组混合效应模型的固定效应
自变量 汉汉-英英组 汉汉-英汉组 英英-英汉组
β SE t p β SE t p β SE t p
截距 607.41 39.54 15.36 <0.001 585.01 38.90 15.04 <0.001 672.80 25.69 26.22 <0.001
目标语言 67.65 24.21 2.80 0.008
语音类型 13.11 1.16 11.28 <0.001 19.09 3.77 5.07 <0.001 19.98 3.86 5.16 <0.001
目标语言:语音类型 -6.343 2.38 -2.66 0.008 -6.77 2.45 -2.76 0.006

表1三组混合效应模型的固定效应
自变量 汉汉-英英组 汉汉-英汉组 英英-英汉组
β SE t p β SE t p β SE t p
截距 607.41 39.54 15.36 <0.001 585.01 38.90 15.04 <0.001 672.80 25.69 26.22 <0.001
目标语言 67.65 24.21 2.80 0.008
语音类型 13.11 1.16 11.28 <0.001 19.09 3.77 5.07 <0.001 19.98 3.86 5.16 <0.001
目标语言:语音类型 -6.343 2.38 -2.66 0.008 -6.77 2.45 -2.76 0.006


表2目标语言在各时间窗口下不同干扰词语音相关类型, 半球和偏侧化的方差分析
变异来源
(df1, df2)
200~250 ms 250~300 ms 300~350 ms 350~400 ms 400~450 ms 450~500 ms
F ηp2 F ηp2 F ηp2 F ηp2 F ηp2 F ηp2
汉汉组
类型(2, 34)
半球(1, 17) 8.02* 0.32 11.53* 0.40 5.15* 0.23
偏侧化(2, 34)
类型×半球(2, 34)
类型×偏侧化(4, 68) 3.83* 0.18
类型×半球×偏侧化(4, 68) 3.27* 0.16
英英组
类型(2, 34)
半球(1, 17) 9.54* 0.36 12.88* 0.43 8.84* 0.34 5.33* 0.24
偏侧化(2, 34)
类型×半球(2, 34)
类型×偏侧化(4, 68) 2.72* 0.14
类型×半球×偏侧化(4, 68)
英汉组
类型(2, 34) 4.10* 0.24 3.42* 0.24
半球(1, 17) 13.72* 0.45 13.72* 0.45 9.35* 0.36
偏侧化(2, 34) 6.55* 0.28 6.66* 0.28
类型×半球(2, 34)
类型×偏侧化(4, 68) 3.27* 0.16
类型×半球×偏侧化(4, 68) 3.17* 0.16

表2目标语言在各时间窗口下不同干扰词语音相关类型, 半球和偏侧化的方差分析
变异来源
(df1, df2)
200~250 ms 250~300 ms 300~350 ms 350~400 ms 400~450 ms 450~500 ms
F ηp2 F ηp2 F ηp2 F ηp2 F ηp2 F ηp2
汉汉组
类型(2, 34)
半球(1, 17) 8.02* 0.32 11.53* 0.40 5.15* 0.23
偏侧化(2, 34)
类型×半球(2, 34)
类型×偏侧化(4, 68) 3.83* 0.18
类型×半球×偏侧化(4, 68) 3.27* 0.16
英英组
类型(2, 34)
半球(1, 17) 9.54* 0.36 12.88* 0.43 8.84* 0.34 5.33* 0.24
偏侧化(2, 34)
类型×半球(2, 34)
类型×偏侧化(4, 68) 2.72* 0.14
类型×半球×偏侧化(4, 68)
英汉组
类型(2, 34) 4.10* 0.24 3.42* 0.24
半球(1, 17) 13.72* 0.45 13.72* 0.45 9.35* 0.36
偏侧化(2, 34) 6.55* 0.28 6.66* 0.28
类型×半球(2, 34)
类型×偏侧化(4, 68) 3.27* 0.16
类型×半球×偏侧化(4, 68) 3.17* 0.16



图2汉汉组(左)、英英组(中)和英汉组(右)在不同时间窗口内3种条件下在Cz电极点上的平均波形图以及相应的时间窗口内的地形分布图 注:波形图中的阴影部分表示的是统计达到显著的效应(p < 0.05), 分别为汉汉组音节效应(250~300 ms) (左)、英英组音素效应(200~250 ms) (中)和英汉组音素效应(250~300 ms) (右)。
图2汉汉组(左)、英英组(中)和英汉组(右)在不同时间窗口内3种条件下在Cz电极点上的平均波形图以及相应的时间窗口内的地形分布图 注:波形图中的阴影部分表示的是统计达到显著的效应(p < 0.05), 分别为汉汉组音节效应(250~300 ms) (左)、英英组音素效应(200~250 ms) (中)和英汉组音素效应(250~300 ms) (右)。



图3汉汉组、英英组与英汉组各个条件下总平均ERPs的GFP和微态分割图
图3汉汉组、英英组与英汉组各个条件下总平均ERPs的GFP和微态分割图







[1] Bakovi? E. (2014). Phonemes, segments and features. Language, Cognition & Neuroscience, 29(1), 21-23.
[2] Bates D., M?chler M., Bolker B. M., & Walker S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48.
[3] Brunet D., Murray M. M., & Michel C. M. (2011). Spatiotemporal analysis of multichannel EEG: CARTOOL. Computational Intelligence and Neuroscience, 2, 813870.
[4] Cai X., Yin Y. L., & Zhang Q. F. (2020). The roles of syllables and phonemes during phonological encoding in Chinese spoken word production: A topographic ERP study. Neuropsychologia, 140, 107382.
URLpmid: 32068028
[5] Chen B. G., Wang L. X., & Peng D. L. (2006). The time course of graphic, phonological and semantic activation of Chinese high-and-low frequency characters. Studies of Psychology and Behavior, 4(4), 252-257.
[ 陈宝国, 王立新, 彭聃龄. (2006). 高、低频汉字形音义激活的时间进程. 心理与行为研究, 4(4), 252-257.]
[6] Chen J.‐Y. (2000). Syllable errors from naturalistic slips of the tongue in Mandarin Chinese. Psychologia, 43(1), 15-26.
[7] Chen J.‐Y., Chen T.‐M., & Dell G. S. (2002). Word‐form encoding in Mandarin Chinese as assessed by the implicit priming task. Journal of Memory and Language, 46(4), 751-781.
[8] Chen J.‐Y., Lin W.‐C., & Ferrand L. (2003). Masked priming of the syllable in Mandarin Chinese speech production. Chinese Journal of Psychology, 45(1), 107-120.
[9] Chen J.-Y., O'Séaghdha P. G., & Chen T.-M. (2016). The primacy of abstract syllables in Chinese word production. Journal of Experimental Psychology: Learning, Memory & Cognition, 42(5), 825-836.
[10] Cohen J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum.
[11] Damian M. F., & Bowers J. S. (2003). Effects of orthography on speech production in a form-preparation paradigm. Journal of Memory and Language, 49(1), 119-132.
[12] Damian M. F., & Martin R. C. (1999). Semantic and phonological codes interact in single word production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(2), 345-361.
doi: 10.1037//0278-7393.25.2.345URLpmid: 10093206
[13] Das T., Padakannaya P., Pugh K. R., & Singh N. C. (2011). Neuroimaging reveals dual routes to reading in simultaneous proficient readers of two orthographies. NeuroImage, 54(2), 1476-1487.
doi: 10.1016/j.neuroimage.2010.09.022URLpmid: 20854914
[14] Dell G. S. (1986). A spreading activation theory of retrieval in sentence production. Psychological Review, 93(3), 283-321.
URLpmid: 3749399
[15] Delorme A., & Makeig S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.
doi: 10.1016/j.jneumeth.2003.10.009URLpmid: 15102499
[16] Fabbro F. (1999). The neurolinguistics of bilingualism. UK: Psychology Press.
[17] Feng C., Yue Y., & Zhang Q. F. (2019). Syllables are retrieved before segments in the spoken production of Mandarin Chinese: An ERP Study. Scientific Reports, 9, 11773-11781.
doi: 10.1038/s41598-019-48033-3URLpmid: 31409830
[18] Ferrand L., Segui J., & Grainger J. (1996). Masked priming of word and picture naming: The role of syllabic units. Journal of Memory and Language, 35(5), 708-723.
doi: 10.1006/jmla.1996.0037URL
[19] Forster K. I., & Davis C. (1991). The density constraint on form-priming in the naming task: Interference effects from a masked prime. Journal of Memory and Language, 30(1), 1-25.
[20] Gollan T. H., Sandoval T., & Salmon D. P. (2011). Cross-language intrusion errors in aging bilinguals reveal the link between executive control and language selection. Psychological Science, 22(9), 1155-1164.
doi: 10.1177/0956797611417002URLpmid: 21775653
[21] Indefrey P. (2011). The spatial and temporal signatures of word production components: A critical update. Frontiers in Psychology, 2, 255.
doi: 10.3389/fpsyg.2011.00255URLpmid: 22016740
[22] Indefrey P., & Levelt W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1-2), 101-144.
doi: 10.1016/j.cognition.2002.06.001URLpmid: 15037128
[23] Jamal N. I., Piche A. W., Napoliello E. M., Perfetti C. A., & Eden G. F. (2012). Neural basis of single-word reading in Spanish-English bilinguals. Human Brain Mapping, 33(1), 235-245.
doi: 10.1002/hbm.21208URLpmid: 21391265
[24] Katz L., & Frost R. (1992). The reading process is different for different orthographies: The orthographic depth hypothesis. In R. Frost & L. Katz (Eds.), Orthography, phonology, morphology, and meaning (pp. 45-66). Amsterdam: Elsevier.
[25] Kinoshita S., & Woollams A. (2002). The masked onset priming effect in naming: Computation of phonology or speech planning? Memory & Cognition, 30, 237-245.
doi: 10.3758/bf03195284URLpmid: 12035885
[26] Koenig T., Kottlow M., Stein M., & Melie-García L. (2011). Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics. Computational Intelligence and Neuroscience, 2011, 938925.
doi: 10.1155/2011/938925URLpmid: 21403863
[27] Koenig T., Stein M., Grieder M., & Kottlow M. (2014). A tutorial on data-driven methods for statistically assessing ERP topographies. Brain Topography, 27, 72-83.
doi: 10.1007/s10548-013-0310-1URLpmid: 23990321
[28] Koukkou M., & Lehmann D. (1987). An information-processing perspective of psychophysiological measurements. Journal of Psychophysiology, 1(2), 109-112.
[29] Laganaro M. (2014). ERP topographic analyses from concept to articulation in word production studies. Frontiers in Psychology, 5, 493.
doi: 10.3389/fpsyg.2014.00493URLpmid: 24904505
[30] Laganaro M. (2017). Inter-study and inter-Individual consistency and variability of EEG/ERP microstate sequences in referential word production. Brain Topography, 30, 785-796.
doi: 10.1007/s10548-017-0580-0URLpmid: 28770364
[31] Lehmann D., & Skrandies W. (1984). Spatial analysis of evoked potentials in man - A review. Progress in Neurobiology, 23(3), 227-250.
doi: 10.1016/0301-0082(84)90003-0URLpmid: 6395186
[32] Lehmann D., Strik W. K., Henggeler B., Koenig T., & Koukkou M. (1998). Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. International Journal of Psychophysiology, 29(1), 1-11.
doi: 10.1016/s0167-8760(97)00098-6URLpmid: 9641243
[33] Levelt W. J. M., Roelofs A., & Meyer A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22(1), 1-75.
doi: 10.1017/s0140525x99001776URLpmid: 11301520
[34] Liberman I. Y., Liberman A. M., Mattingly I. G. & Shankweiler D. (1980). Orthography and the beginning reader. In J. Kavanaugh & R. Venezky (Eds.), Orthography, reading, and dyslexia, (pp. 81-101). Baltimore: University Park Press.
[35] Liu H. S., & Cao F. (2016). L1 and L2 processing in the bilingual brain: A meta-analysis of neuroimaging studies. Brain and Language, 159, 60-73.
doi: 10.1016/j.bandl.2016.05.013URLpmid: 27295606
[36] Malouf T., & Kinoshita S. (2007). Masked onset priming effect for high-frequency words: Further support for the speech-planning account. The Quarterly Journal of Experimental Psychology, 60(8), 1155-1167.
doi: 10.1080/17470210600964035URLpmid: 17654397
[37] Meyer A. S., & Schriefers H. (1991). Phonological facilitation in picture-word interference experiments: Effects of stimulus onset asynchrony and types of interfering stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(6), 1146-1160.
[38] Michel C. M., Thut G., Morand S., Khateb A., Pegna A. J., de Peralta R. G., ... Landis T. (2001). Electric source imaging of human brain functions. Brain Research Reviews, 36(2-3), 108-118.
doi: 10.1016/s0165-0173(01)00086-8URLpmid: 11690607
[39] Misra M., Guo T. M., Bobb S. C., & Kroll J. F. (2012). When bilinguals choose a single word to speak: Electrophysiological evidence for inhibition of the native language. Journal of Memory & Language, 67(1), 224-237.
[40] Murray M. M., Brunet D., & Michel C. M. (2008). Topographic ERP analyses: A step-by-step tutorial review. Brain Topography, 20, 249-264.
doi: 10.1007/s10548-008-0054-5URLpmid: 18347966
[41] Nakayama M., Kinoshita S., & Verdonschot R. G. (2016). The emergence of a phoneme-sized unit in L2 speech production: Evidence from Japanese-English bilinguals. Frontiers in Psychology, 7, 175.
doi: 10.3389/fpsyg.2016.00175URLpmid: 26941669
[42] Nelson J. R., Liu Y., Fiez J., & Perfetti C. A. (2009). Assimilation and accommodation patterns in ventral occipitotemporal cortex in learning a second writing system. Human Brain Mapping, 30(3), 810-820.
doi: 10.1002/hbm.20551URLpmid: 18381767
[43] O’Seaghdha P. G., Chen J.-Y., Chen T.-M. (2010). Proximate units in word production: Phonological encoding begins with syllables in Mandarin Chinese but with segments in English. Cognition, 115(2), 282-302.
doi: 10.1016/j.cognition.2010.01.001URLpmid: 20149354
[44] O’Seaghdha P. G., Chen J.-Y., & Chen T.-M. (2013). Close but not proximate: The significance of phonological segments in speaking depends on their functional engagement. Proceedings of the National Academy of Sciences of the United States of America, 110(1), E3.
doi: 10.1073/pnas.1217032110URLpmid: 23223681
[45] Paulesu E., McCrory E., Fazio F., Menoncello L., Brunswick N., Cappa S. F., ... Frith U. (2000). A cultural effect on brain function. Nature Neuroscience, 3, 91-96.
doi: 10.1038/71163URLpmid: 10607401
[46] Perfetti C. A., Liu Y., Fiez J., Nelson J., Bolger D. J., & Tan L. H. (2007). Reading in two writing systems: Accommodation and assimilation of the brain's reading network. Bilingualism: Language and Cognition, 10(2), 131-146.
doi: 10.1017/S1366728907002891URL
[47] Qu Q. Q., Damian M. F., & Kazanina N. (2012). Sound-sized segments are significant for Mandarin speakers. Proceedings of the National Academy of Sciences of the United States of America, 109(35), 14265-14270.
doi: 10.1073/pnas.1200632109URL
[48] R Development Core Team. (2009). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
[49] Roelofs A. (2014). A dorsal-pathway account of aphasic language production: The WEAVER++/ARC model. Cortex, 59, 33-48.
[50] Roelofs A. (2015). Modeling of phonological encoding in spoken word production: From Germanic languages to Mandarin Chinese and Japanese. Japanese Psychological Research, 57(1), 22-37.
[51] Schiller N. O. (2008). The masked onset priming effect in picture naming. Cognition, 106(2), 952-962.
doi: 10.1016/j.cognition.2007.03.007URLpmid: 17442296
[52] Schriefers H., Meyer A. S., & Levelt W. J. M. (1990). Exploring the time course of lexical access in language production: Picture-word interference studies. Journal of Memory and Language, 29(1), 86-102.
[53] Snodgrass J. C., & Vanderwart M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6(2), 174-215.
[54] Sun Y. F., Peng D. L., Ding G. S., Qi T., Desroches A. S., & Liu L. (2015). The dynamic nature of assimilation and accommodation procedures in the brains of Chinese- English and English-Chinese bilinguals. Human Brain Mapping, 36(10), 4144-4157.
URLpmid: 26189500
[55] Tan L. H., Laird A. R., Li K., & Fox P. T. (2010). Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: A meta-analysis. Human Brain Mapping, 25(1), 83-91.
doi: 10.1002/hbm.20134URLpmid: 15846817
[56] Tian M. Y., Chen B. G., Yang H. Y., & Bi H. Y. (2019). Chinese phonological consistency effect in native and second language learners of Chinese: An fMRI study. Journal of Neurolinguistics, 49, 202-213.
[57] Timmer K., Ganushchak L. Y., Ceusters I., & Schiller N. O. (2014). Second language phonology influences first language word naming. Brain and Language, 133, 14-25.
URLpmid: 24735994
[58] Timmer K., & Schiller N. O. (2012). The role of orthography and phonology in English: An ERP study on first and second language reading aloud. Brain Research, 1483, 39-53.
doi: 10.1016/j.brainres.2012.09.004URLpmid: 22975434
[59] Verdonschot R. G., Nakayama M., Zhang Q. F., Tamaoka K., & Schiller N. O. (2013). The proximate phonological unit of Chinese-English bilinguals: Proficiency matters. PLoS One, 8(4), e61454.
doi: 10.1371/journal.pone.0061454URLpmid: 23646107
[60] Wang H., Liu J., & Chang B. R. (1986). Modern Chinese frequency dictionary. Beijing, China: Beijing Language Institute Publisher.
[ 王还, 刘杰, 常宝儒. (1986). 现代汉语频率词典. 北京: 北京语言出版社.]
[61] Wang J., Wong A. W.-K., & Chen H.-C. (2017). Time course of syllabic and sub-syllabic processing in mandarin word production: Evidence from the picture-word interference paradigm. Psychonomic Bulletin & Review, 25(3), 1147-1152.
[62] Wang J., Wong A. W.-K., Wang S. P., & Chen H.-C. (2017). Primary phonological planning units in spoken word production are language-specific: Evidence from an ERP study. Scientific Reports, 7(1), 5815.
doi: 10.1038/s41598-017-06186-zURLpmid: 28724982
[63] Wang L., Bastiaansen M., Yang Y. F., & Hagoort P. (2011). The influence of information structure on the depth of semantic processing: How focus and pitch accent determine the size of the N400 effect. Neuropsychologia, 49(5), 813-820.
doi: 10.1016/j.neuropsychologia.2010.12.035URLpmid: 21195102
[64] Wang X. X. (2013). Phonological Facilitation in Mandarin Word Production: Evidence from Tibetan-Chinese Bilinguals. Unpublished master’s thesis. Hebei Normal University, China.
[ 王星星 (2013). 双语者第二语言产生中的语音效应. 硕士学位论文. 河北师范大学.]
[65] Wang Y., Jongman A., & Sereno J. A. (2001). Dichotic perception of mandarin tones by Chinese and American listeners. Brain and Language, 78(3), 332-348.
doi: 10.1006/brln.2001.2474URLpmid: 11703061
[66] Wang Y., Sereno J. A., Jongman A., & Hirsch J. (2003). FMRI evidence for cortical modification during learning of mandarin lexical tone. Journal of Cognitive Neuroscience, 15(7), 1019-1027.
URLpmid: 14614812
[67] Wong A. W.-K., & Chen H.-C. (2008). Processing segmental and prosodic information in Cantonese word production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(5), 1172-1190.
doi: 10.1037/a0013000URLpmid: 18763899
[68] Wong A. W.-K., & Chen H.-C. (2009). What are effective phonological units in Cantonese spoken word planning? Psychonomic Bulletin & Review, 16, 888-892.
[69] Wong A. W.-K., Huang. J, & Chen H.-C. (2012). Phonological units in spoken word production: Insights from Cantonese. PLoS One, 7(11), e48776.
doi: 10.1371/journal.pone.0048776URLpmid: 23144965
[70] Wong A. W.-K., Wang J., Wong S.-S., & Chen H.-C. (2018). Syllable retrieval precedes sub-syllabic encoding in Cantonese spoken word production. PLoS One, 13(11), e0207617.
doi: 10.1371/journal.pone.0207617URLpmid: 30458036
[71] Yekutieli D., & Benjamini Y. (1999). Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. Journal of Statistical Planning and Inference, 82(1-2), 171-196.
[72] You W. P., Zhang Q. F., & Verdonschot R. G. (2012). Masked syllable priming effects in word and picture naming in Chinese. PLoS One, 7(10), e46595.
doi: 10.1371/journal.pone.0046595URLpmid: 23056360
[73] Yu M. X., Mo C., & Mo L. (2014). The role of phoneme in Mandarin Chinese Production: Evidence from ERPs. PLoS One, 9(9), e106486.
doi: 10.1371/journal.pone.0106486URLpmid: 25191857
[74] Yue Y., & Zhang Q. F. (2015). Syllable and segments effects in Mandarin Chinese spoken word production. Acta Psychologica Sinica, 47(3), 319-328.
[ 岳源, 张清芳. (2015). 汉语口语产生中音节和音段的促进和抑制效应. 心理学报, 47(3), 319-328.]
[75] Zhang K. (2004). Some problems in HSK grading. Chinese Teaching in the World,(1), 71-80.
[ 张凯. (2004). HSK等级分数问题. 世界汉语教学, (1), 71-80.]
[76] Zhang Q. F., & Damian M. F. (2019). Syllables constitute proximate units for Mandarin speakers: Electrophysiological evidence from a masked priming task. Psychophysiology, 56(4), e13317.
doi: 10.1111/psyp.13317URLpmid: 30657602
[77] Zhang Q. F., Damian M. F., & Yang Y. F. (2007). Electrophysiological estimates of the time course of tonal and orthographic encoding in Chinese speech production. Brain Research, 1184, 234-244.
URLpmid: 17964559
[78] Zhang Q. F., & Wang X. J. (2020). Primary phonological planning units in Chinese spoken word production: Evidence from an ERP study with implicit priming paradigm. Acta Psychologica Sinica, 52(4), 414-425.
[ 张清芳, 王雪娇. (2020). 汉语口语词汇产生的音韵编码单元:内隐启动范式的ERP研究. 心理学报, 52(4), 414-425.]
[79] Zhang Q. F., & Yang Y. F. (2003). The determiners of picture-naming latency. Acta Psychologica Sinica, 35(4), 447-454.
[ 张清芳, 杨玉芳. (2003). 影响图画命名时间的因素. 心理学报, 35(4), 447-454.]
[80] Zhang Q. F., & Yang Y. F. (2005). The phonological planning unit in Chinese monosyllabic word production. Journal of Psychological Science, 28(2), 374-378.
[ 张清芳, 杨玉芳. (2005). 汉语单音节词汇产生中音韵编码的单元. 心理科学, 28( 2), 374-378.]
[81] Zhang Q. F., & Zhu X. B. (2011). The temporal and spatial features of segmental and suprasegmental encoding during implicit picture naming: An event-related potential study. Neuropsychologia, 49(14), 3813-382.
doi: 10.1016/j.neuropsychologia.2011.09.040URLpmid: 21986294
[82] Zhao J., Li Q. L., Wang J. J., Yang Y., Deng Y., & Bi H. Y. (2012). Neural basis of phonological processing in second language reading: An fMRI study of Chinese regularity effect. Neuroimage, 60(1), 419-425.
doi: 10.1016/j.neuroimage.2011.12.074URLpmid: 22245646




[1]张清芳,王雪娇. 汉语口语词汇产生的音韵编码单元:内隐启动范式的ERP研究[J]. 心理学报, 2020, 52(4): 414-425.
[2]李杰,何虎,吴柏周,侯友,曹亢,阿如罕. 不同熟练度双语者的颜色范畴知觉效应:来自行为和ERP的证据[J]. 心理学报, 2018, 50(11): 1259-1268.
[3]焦江丽, 刘毅, 闻素霞. 不同熟练类型双语者情绪Stroop中的自动化情绪通达[J]. 心理学报, 2017, 49(9): 1150-1157.
[4]李恒;曹宇. 第二语言水平对双语者语言抑制能力的影响 ——来自英语–汉语单通道双语者和英语–美国手语双通道双语者的证据[J]. 心理学报, 2016, 48(4): 343-351.
[5]王娟;张积家. 启动语言对汉-英双语者场景一致性判断的影响[J]. 心理学报, 2014, 46(3): 331-340.
[6]王悦;张积家. 熟练中-英双语者对多义词早期识别中语义和语法的相互作用[J]. 心理学报, 2013, 45(3): 298-309.
[7]张积家,王悦. 熟练汉-英双语者的语码切换机制—— 来自短语水平的证据[J]. 心理学报, 2012, 44(2): 166-178.
[8]白学军,郭志英,顾俊娟,曹玉肖,闫国利. 词切分对日-汉双语者汉语阅读影响的眼动研究[J]. 心理学报, 2011, 43(11): 1273-1282.
[9]王瑞明,邓汉深,李俊杰,李利,范梦. 中-英双语者语言理解中非加工语言的自动激活[J]. 心理学报, 2011, 43(07): 771-783.
[10]李利,莫雷,王瑞明. 熟练中-英双语者三语词汇的语义通达[J]. 心理学报, 2008, 40(05): 523-530.
[11]张清芳. 汉语单音节和双音节词汇产生中的音韵编码过程:内隐启动范式研究[J]. 心理学报, 2008, 40(03): 253-262.
[12]张清芳,杨玉芳. 汉语词汇产生中词汇选择和音韵编码之间的交互作用[J]. 心理学报, 2006, 38(04): 480-488.
[13]张清芳,杨玉芳. 汉语词汇产生中语义、字形和音韵激活的时间进程[J]. 心理学报, 2004, 36(01): 1-8.
[14]王沛,王新波. 社会判断中的样例激活效应[J]. 心理学报, 2003, 35(01): 112-119.
[15]王沛. 社会信息归类过程中刻板印象的内隐效应[J]. 心理学报, 2002, 34(03): 81-85.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4839
相关话题/英汉 汉语 心理 语言 过程