删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

音乐训练促进诗句韵律整合加工的神经过程

本站小编 Free考研考试/2022-01-01

张政华1,2, 韩梅1,2, 张放3, 李卫君1,2()
1 辽宁师范大学脑与认知神经科学研究中心
2 辽宁省脑与认知神经科学重点实验室
3 辽宁师范大学音乐学院, 大连 116029
收稿日期:2019-12-04出版日期:2020-07-25发布日期:2020-05-25
通讯作者:李卫君E-mail:li_wj@126.com

基金资助:* 辽宁省教育厅自然科学基金(LJ2019016);辽宁省自然科学基金(20180550313);中国科学院行为科学重点实验室开放课题基金(Y5CX052003)

Musical training improves rhythm integrative processing of classical Chinese poem

ZHANG Zhenghua1,2, HAN Mei1,2, ZHANG Fang3, LI Weijun1,2()
1 Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
2 Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, China
3 Conservatory of Music, Liaoning Normal University, Dalian 116029, China
Received:2019-12-04Online:2020-07-25Published:2020-05-25
Contact:LI Weijun E-mail:li_wj@126.com






摘要/Abstract


摘要: 本研究采用ERP技术, 考察音乐训练组和对照组完成诗句押韵判断任务时, 在绝句末对韵律信息(含声调和韵母两个维度)的整合加工过程。结果发现, 在100~300 ms, 仅音乐训练组在声调/韵母合适条件下, 对韵母/声调的一致性进行深入分析, 并诱发了更大的正波; 在韵母违反条件下, 声调违反相比声调合适诱发了更小的正波。在300~750 ms, 两组被试均在绝句末对诗句内出现的韵母和声调违反进行整合分析并诱发了广泛分布的负波。不过, 对照组仅在声调/韵母合适条件下进行, 而音乐训练组则在声调/韵母违反条件下完成此过程。综上, 音乐训练组和对照组均会在诗句末完成押韵信息的整合加工, 但是音乐训练组对韵律信息(尤其是声调)的加工更敏感和快速, 并且对不同类型的违反有更精细的差异性反应


表1被试人口学资料
编号 性别 年龄(岁) 受教育程度 训练开始年龄(岁) 训练时长(年) 乐器
M N M N M N M N M N M N
1 18 18 本科生 本科生 7 11 0 竹笛
2 18 19 本科生 本科生 7 11 0 爵士鼓、小军鼓
3 19 19 本科生 本科生 7 12 0 钢琴
4 19 20 本科生 本科生 7 11 0 钢琴
5 19 20 本科生 本科生 7 10 0 二胡、双排键
6 21 20 本科生 本科生 7 10 0 竹笛、葫芦丝
7 21 21 本科生 本科生 6 10 0 二胡、钢琴
8 22 22 本科生 本科生 7 15 0 二胡
9 23 23 本科生 本科生 7 15 0 钢琴、吉他
10 19 19 本科生 本科生 7 11 0 扬琴
11 19 19 本科生 本科生 6 12 0 扬琴
12 19 19 本科生 本科生 6 13 0 扬琴
13 19 20 本科生 本科生 6 13 0 琵琶
14 19 20 本科生 本科生 5 10 0 琵琶
15 20 20 本科生 本科生 7 13 0 钢琴、古筝
16 20 20 本科生 本科生 7 13 0 钢琴、吉他
17 20 20 本科生 本科生 6 14 0 钢琴
18 21 21 本科生 本科生 7 14 0 钢琴
19 21 21 本科生 本科生 5 16 0 钢琴、大提琴
20 21 22 本科生 本科生 4 17 0 钢琴、古筝
21 21 22 本科生 本科生 4 17 0 钢琴、小号、古筝
22 23 23 本科生 本科生 7 16 0 钢琴、古筝、架子鼓
23 23 23 本科生 本科生 7 16 0 钢琴、双排键、琵琶
24 23 24 研究生 研究生 5 18 0 钢琴、双排键、琵琶
25 26 26 研究生 研究生 7 12 0 钢琴、葫芦丝、长笛

表1被试人口学资料
编号 性别 年龄(岁) 受教育程度 训练开始年龄(岁) 训练时长(年) 乐器
M N M N M N M N M N M N
1 18 18 本科生 本科生 7 11 0 竹笛
2 18 19 本科生 本科生 7 11 0 爵士鼓、小军鼓
3 19 19 本科生 本科生 7 12 0 钢琴
4 19 20 本科生 本科生 7 11 0 钢琴
5 19 20 本科生 本科生 7 10 0 二胡、双排键
6 21 20 本科生 本科生 7 10 0 竹笛、葫芦丝
7 21 21 本科生 本科生 6 10 0 二胡、钢琴
8 22 22 本科生 本科生 7 15 0 二胡
9 23 23 本科生 本科生 7 15 0 钢琴、吉他
10 19 19 本科生 本科生 7 11 0 扬琴
11 19 19 本科生 本科生 6 12 0 扬琴
12 19 19 本科生 本科生 6 13 0 扬琴
13 19 20 本科生 本科生 6 13 0 琵琶
14 19 20 本科生 本科生 5 10 0 琵琶
15 20 20 本科生 本科生 7 13 0 钢琴、古筝
16 20 20 本科生 本科生 7 13 0 钢琴、吉他
17 20 20 本科生 本科生 6 14 0 钢琴
18 21 21 本科生 本科生 7 14 0 钢琴
19 21 21 本科生 本科生 5 16 0 钢琴、大提琴
20 21 22 本科生 本科生 4 17 0 钢琴、古筝
21 21 22 本科生 本科生 4 17 0 钢琴、小号、古筝
22 23 23 本科生 本科生 7 16 0 钢琴、古筝、架子鼓
23 23 23 本科生 本科生 7 16 0 钢琴、双排键、琵琶
24 23 24 研究生 研究生 5 18 0 钢琴、双排键、琵琶
25 26 26 研究生 研究生 7 12 0 钢琴、葫芦丝、长笛



图1实验材料各条件举例及实验流程。V+T+:韵母合适、声调合适; V+T-:韵母合适、声调违反; V-T+:韵母违反、声调合适; V-T-:韵母违反、声调违反
图1实验材料各条件举例及实验流程。V+T+:韵母合适、声调合适; V+T-:韵母合适、声调违反; V-T+:韵母违反、声调合适; V-T-:韵母违反、声调违反



图2音乐训练者(25人)和相应对照组(25人)完成押韵判断任务时, 韵母(左)和声调(右)在合适和违反条件下的平均正确率(上)和反应时(下)。
图2音乐训练者(25人)和相应对照组(25人)完成押韵判断任务时, 韵母(左)和声调(右)在合适和违反条件下的平均正确率(上)和反应时(下)。



图325个音乐训练者(左)和25个对照者(右)加工七言绝句押韵信息的总平均波形(上)和地形图(下)。ERP分析的开始时间为第二联末字开始位置。地形图为全合适条件的地形图以及各违反条件与全合适条件的差异波地形图。
图325个音乐训练者(左)和25个对照者(右)加工七言绝句押韵信息的总平均波形(上)和地形图(下)。ERP分析的开始时间为第二联末字开始位置。地形图为全合适条件的地形图以及各违反条件与全合适条件的差异波地形图。



图425个音乐训练者(左)和25个对照组被试(右)加工七言绝句押韵信息时大脑两侧100~300 ms (上)和300~750 ms (下)诱发脑电效应的平均波幅。V+T+:韵母正常, 声调正常; V+T-:韵母正常, 声调违反; V-T+:韵母违反, 声调正常; V-T-:韵母违反, 声调违反。
图425个音乐训练者(左)和25个对照组被试(右)加工七言绝句押韵信息时大脑两侧100~300 ms (上)和300~750 ms (下)诱发脑电效应的平均波幅。V+T+:韵母正常, 声调正常; V+T-:韵母正常, 声调违反; V-T+:韵母违反, 声调正常; V-T-:韵母违反, 声调违反。







[1] Arthur, W., & Day, D. V. ( 1994). Development of a short form for the raven advanced progressive matrices test. Educational & Psychological Measurement, 54( 2), 394-403.
[2] Atienza, M., Cantero, J. L., & Dominguez-Marin, E. ( 2002). The time course of neural changes underlying auditory perceptual learning. Learning & Memory, 9( 3), 138-150.
URLpmid: 12075002
[3] Bidelman, G. M., Gandour, J. T., & Krishnan, A. ( 2011). Cross- domain effects of music and language experience on the representation of pitch in the human auditory brainstem. Journal of Cognitive Neuroscience, 23( 2), 425-434.
[4] Bidelman, G. M., Weiss, M. W., Moreno, S., & Alain, C. ( 2014). Coordinated plasticity in brainstem and auditory cortex contributes to enhanced categorical speech perception in musicians. European Journal of Neuroscience, 40( 4), 2662-2673.
URLpmid: 24890664
[5] Bohan, J., Leuthold, H., Hijikata, Y., & Sanford, A. J. ( 2012). The processing of good-fit semantic anomalies: An ERP investigation. Neuropsychologia, 50( 14), 3174-3184.
[6] Camblin, C. C., Gordon, P. C., & Swaab, T. Y. ( 2007). The interplay of discourse congruence and lexical association during sentence processing: Evidence from ERPs and eye tracking. Journal of Memory and Language, 56( 1), 103-128.
doi: 10.1016/j.jml.2006.07.005URLpmid: 17218992
[7] Carpenter, M., Cranford, J. L., Hymel, M. R., de Chicchis, A. R., & Holbert, D. ( 2002). Electrophysiologic signs of attention versus distraction in a binaural listening task. Journal of Clinical Neurophysiology, 19( 1), 55-60.
URLpmid: 11896353
[8] Chen, J., Liu, L., Wang, R., & Shen, H. Z. ( 2017). The effect of musical training on executive functions. Advances in Psychological Science, 25( 11), 1854-1864.
[ 陈杰, 刘雷, 王蓉, 沈海洲. ( 2017). 音乐训练对执行功能的影响. 心理科学进展, 25( 11), 1854-1864.]
[9] Chen, J. L., Penhune, V. B., & Zatorre, R. J. ( 2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18( 12), 2844-2854.
[10] Chen, Q. R., Zhang, J. J., Xu, X. D., Scheepers, C., Yang, Y. M., & Tanenhaus, M. K. ( 2016). Prosodic expectations in silent reading: ERP evidence from rhyme scheme and semantic congruence in classic Chinese poems. Cognition, 154, 11-21.
[11] Chobert, J., Fran?ois, C., Velay, J.-L., & Besson, M. ( 2012). Twelve months of active musical training in 8-to 10-year- old children enhances the preattentive processing of syllabic duration and voice onset time. Cerebral Cortex, 24( 4), 956-967.
[12] Clayton, K. K., Swaminathan, J., Yazdanbakhsh, A., Zuk, J., Patel, A. D., & Kidd, G. ( 2016). Executive function, visual attention and the cocktail party problem in musicians and non-musicians. PloS One, 11( 7), e0157638.
[13] Coch, D., Grossi, G., Skendzel, W., & Neville, H. ( 2005). ERP nonword rhyming effects in children and adults. Journal of Cognitive Neuroscience, 17( 1), 168-182.
[14] Cooper, A., & Wang, Y. ( 2012). The influence of linguistic and musical experience on cantonese word learning. The Journal of the Acoustical Society of America, 131( 6), 4756-4769.
doi: 10.1121/1.4714355URLpmid: 22712948
[15] Crowley, K. E., & Colrain, I. M. ( 2004). A review of the evidence for P2 being an independent component process: Age, sleep and modality. Clinical Neurophysiology, 115( 4), 732-744.
URLpmid: 15003751
[16] Dahan, D. ( 2015). Prosody and language comprehension. Wiley Interdisciplinary Reviews Cognitive Science, 6( 5), 441-452.
[17] de Vincenzi, M., Job, R., di Matteo, R., Angrilli, A., Penolazzi, B., Ciccarelli, L., & Vespignani, F. ( 2003). Differences in the perception and time course of syntactic and semantic violations. Brain and Language, 85( 2), 280-296.
[18] Delogu, F., Lampis, G., & Belardinelli, M. O. ( 2010). From melody to lexical tone: Musical ability enhances specific aspects of foreign language perception. European Journal of Cognitive Psychology, 22( 1), 46-61.
doi: 10.1080/09541440802708136URL
[19] Dilley, L. C., Mattys, S. L., & Vinke, L. ( 2010). Potent prosody: Comparing the effects of distal prosody, proximal prosody, and semantic context on word segmentation. Journal of Memory and Language, 63( 3), 274-294.
doi: 10.1016/j.jml.2010.06.003URL
[20] Ditman, T., Holcomb, P. J., & Kuperberg, G. R. ( 2007). An investigation of concurrent ERP and self-paced reading methodologies. Psychophysiology, 44( 6), 927-935.
URLpmid: 17850242
[21] Fan, W., Zhong, Y. P., Li, J., Yang, Z. L., Zhan, Y. L., Cai, R. H., & Fu, X. L. ( 2016). Negative emotion weakens the degree of self-reference effect: Evidence from ERPs. Frontiers in Psychology, 7, 1408.
[22] Fran?ois, C., Chobert, J., Besson, M., & Sch?n, D. ( 2012). Music training for the development of speech segmentation. Cerebral Cortex, 23( 9), 2038-2043.
URLpmid: 22784606
[23] Franklin, M. S., Sledge Moore, K., Yip, C.-Y., Jonides, J., Rattray, K., & Moher, J. ( 2008). The effects of musical training on verbal memory. Psychology of Music, 36( 3), 353-365.
[24] Gottfried, T. L., Staby, A. M., & Ziemer, C. J. ( 2004). Musical experience and mandarin tone discrimination and imitation. The Journal of the Acoustical Society of America, 115( 5), 2545-2545.
[25] Hagoort, P. ( 2003). Interplay between syntax and semantics during sentence comprehension: ERP effects of combining syntactic and semantic violations. Journal of Cognitive Neuroscience, 15( 6), 883-899.
URLpmid: 14511541
[26] Hansen, M., Wallentin, M., & Vuust, P. ( 2013). Working memory and musical competence of musicians and non-musicians. Psychology of Music, 41( 6), 779-793.
[27] Hausen, M., Torppa, R., Salmela, V. R., Vainio, M., & S?rk?m?, T. ( 2013). Music and speech prosody: A common rhythm. Frontiers in Psychology, 4( 2), 566.
[28] Hu, J., Gao, S., Ma, W., & Yao, D. ( 2012). Dissociation of tone and vowel processing in Mandarin idioms. Psychophysiology, 49( 9), 1179-1190.
URLpmid: 22748083
[29] Huang, X. J., Yang, J.-C., Zhang, Q., & Guo, C. Y. ( 2014). The time course of spoken word recognition in mandarin Chinese: A unimodal ERP study. Neuropsychologia, 63, 165-174.
doi: 10.1016/j.neuropsychologia.2014.08.015URLpmid: 25172388
[30] Huang, X., Liu, X., Yang, J. C., Zhao, Q., & Zhou, J. ( 2018). Tonal and vowel information processing in Chinese spoken word recognition: An event-related potential study. Neuroreport, 29( 5), 1.
doi: 10.1097/WNR.0000000000000912URL
[31] James, C. E., Oechslin, M. S., van de Ville, D., Hauert, C.-A., Descloux, C., & Lazeyras, F. ( 2014). Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Structure and Function, 219( 1), 353-366.
[32] Jang, C. M. (2016). Psychology of music. Shanghai, China: East China Normal University Press.
[ 蒋存梅. (2016). 音乐心理学. 上海: 华东师范大学出版社.]
[33] Jin, H., Zhong, W. F., Xu, G. P., Cai, M. X., Yang, Y. F., Mo, L. ( 2009). The time course of world knowledge integration in sentence comprehension. Acta Psychologica Sinica, 41( 7), 565-571.
[ 金花, 钟伟芳, 徐贵平, 蔡梦娴, 杨玉芳, 莫雷. ( 2009). 世界知识在句子理解中的整合时程. 心理学报, 41( 7), 565-571.]
[34] Julia, H., Caroline, W., Caterina, P., Hubert, T., Barbara, H., & Isabell, W. ( 2013). Brain response to prosodic boundary cues depends on boundary position. Frontiers in Psychology, 4, 421.
[35] Juslin, P. N., & Laukka, P. ( 2003). Communication of emotions in vocal expression and music performance: Different channels, same code? Psychological Bulletin, 129( 5), 770-814.
[36] Just, M. A., & Carpenter, P. A. ( 1980). A theory of reading: from eye fixations to comprehension. Psychological Review, 87( 4), 329-354.
[37] Just, M. A., Carpenter, P. A., & Woolley, J. D. ( 1982). Paradigms and processes in reading comprehension. Journal of experimental psychology: General, 111( 2), 228-238.
[38] Kotz, S. A., Meyer, M., Alter, K., Besson, M., von Cramon, D. Y., & Friederici, A. D. ( 2003). On the lateralization of emotional prosody: An event-related functional MR investigation. Brain and Language, 86( 3), 366-376.
[39] Kühnis, J., Elmer, S., Meyer, M., & J?ncke, L. ( 2013). The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study. Neuropsychologia, 51( 8), 1608-1618.
doi: 10.1016/j.neuropsychologia.2013.04.007URLpmid: 23664833
[40] Kuperberg, G. R., Kreher, D. A., Goff, D., McGuire, P. K., & David, A. S. ( 2006). Building up linguistic context in schizophrenia: Evidence from self-paced reading. Neuropsychology, 20( 4), 442-452.
[41] Kutas, M., & Federmeier, K. D. ( 2011). Thirty years and counting: Finding meaning in the N400 component of the event related brain potential (ERP). Annual review of psychology, 62, 621-647.
URLpmid: 20809790
[42] Lee, C.-Y., & Hung, T.-H. ( 2008). Identification of mandarin tones by English-speaking musicians and nonmusicians. The Journal of the Acoustical Society of America, 124( 5), 3235-3248.
doi: 10.1121/1.2990713URLpmid: 19045807
[43] Li, W. J., Liu, M., Zhang, Z. H., Deng, N. L., & Xing, Y. S. ( 2018). Neural processing of ambiguous Chinese phrases of stutters. Acta Psychologica Sinica, 50( 12), 1323-1335.
[ 李卫君, 刘梦, 张政华, 邓娜丽, 邢钰珊. ( 2018). 口吃者加工汉语歧义短语的神经过程. 心理学报, 50( 12), 1323-1335.]
[44] Li, W. J., Wang, L., & Yang, Y. F. ( 2014). Chinese tone and vowel processing exhibits distinctive temporal characteristics: An electrophysiological perspective from classical Chinese poem processing. PLOS ONE, 9( 1), e85683.
URLpmid: 24416438
[45] Li, W. J., Yang, Y. F. ( 2010). The cognitive processing of prosodic boundary and its related brain effect in quatrain. Acta Psychologica Sinica, 42( 11), 1021-1032.
[ 李卫君, 杨玉芳. ( 2010). 绝句韵律边界的认知加工及其脑电效应. 心理学报, 42( 11), 1021-1032.]
[46] Liu, F., Patel, A. D., Fourcin, A., & Stewart, L. ( 2010). Intonation processing in congenital amusia: Discrimination, identification and imitation. Brain, 133( 6), 1682-1693.
[47] Magne, C., Astésano, C., Aramaki, M., Ystad, S., Kronland- Martinet, R., & Besson, M. ( 2007). Influence of syllabic lengthening on semantic processing in spoken French: Behavioral and electrophysiological evidence. Cerebral Cortex, 17( 11), 2659-2668.
doi: 10.1093/cercor/bhl174URLpmid: 17264253
[48] Magne, C., Sch?n, D., & Besson, M. ( 2006). Musician children detect pitch violations in both music and language better than nonmusician children: Behavioral and electrophysiological approaches. Journal of Cognitive Neuroscience, 18( 2), 199-211.
URLpmid: 16494681
[49] Marie, C., Magne, C., & Besson, M. ( 2011). Musicians and the metric structure of words. Journal of Cognitive Neuroscience, 23( 2), 294-305.
doi: 10.1162/jocn.2010.21413URLpmid: 20044890
[50] Marques, C., Moreno, S., Luís Castro, S., & Besson, M. ( 2007). Musicians detect pitch violation in a foreign language better than nonmusicians: Behavioral and electrophysiological evidence. Journal of Cognitive Neuroscience, 19( 9), 1453-1463.
doi: 10.1162/jocn.2007.19.9.1453URLpmid: 17714007
[51] Milovanov, R., Huotilainen, M., V?lim?ki, V., Esquef, P. A., & Tervaniemi, M. ( 2008). Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence. Brain Research, 1194, 81-89.
doi: 10.1016/j.brainres.2007.11.042URLpmid: 18182165
[52] Molinaro, N., Vespignani, F., & Job, R. ( 2008). A deeper reanalysis of a superficial feature: An ERP study on agreement violations. Brain Research, 1228, 161-176.
doi: 10.1016/j.brainres.2008.06.064URLpmid: 18619420
[53] Moreno, S., & Bidelman, G. M. ( 2014). Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hearing Research, 308, 84-97.
doi: 10.1016/j.heares.2013.09.012URL
[54] Musacchia, G., Strait, D., & Kraus, N. ( 2008). Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians. Hearing Research, 241( 1-2), 34-42.
doi: 10.1016/j.heares.2008.04.013URLpmid: 18562137
[55] Nan, Y. ( 2017). The facilitation effect of music learning on speech processing. Advances in Psychological Science, 25( 11), 1844-1853.
doi: 10.3724/SP.J.1042.2017.01844URL
[ 南云. ( 2017). 音乐学习对语言加工的促进作用. 心理科学进展, 25( 11), 1844-1853.]
[56] Nan, Y., Liu, L., Geiser, E., Shu, H., Gong, C. C., Dong, Q., .. Desimone, R. ( 2018). Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. Proceedings of the National Academy of Sciences, 115( 28), E6630-E6639.
doi: 10.1073/pnas.1808412115URL
[57] Nan, Y., Sun, Y. N., & Peretz, I. ( 2010). Congenital amusia in speakers of a tone language: Association with lexical tone agnosia. Brain, 133( 9), 2635-2642.
doi: 10.1093/brain/awq178URLpmid: 20685803
[58] Nutley, S. B., Darki, F., & Klingberg, T. ( 2014). Music practice is associated with development of working memory during childhood and adolescence. Frontiers in Human Neuroscience, 7, 926.
doi: 10.3389/fnhum.2013.00926URLpmid: 24431997
[59] Osterhout, L., & Holcomb, P. J. ( 1993). Event-related potentials and syntactic anomaly: Evidence of anomaly detection during the perception of continuous speech. Language and Cognitive Processes, 8( 4), 413-437.
[60] Osterhout, L., & Mobley, L. A. ( 1995). Event-related brain potentials elicited by failure to agree. Journal of Memory and Language, 34( 6), 739-773.
[61] Osterhout, L., & Nicol, J. ( 1999). On the distinctiveness, independence, and time course of the brain responses to syntactic and semantic anomalies. Language and Cognitive Processes, 14( 3), 283-317.
[62] Partanen, E., Vainio, M., Kujala, T., & Huotilainen, M. ( 2011). Linguistic multifeature MMN paradigm for extensive recording of auditory discrimination profiles. Psychophysiology, 48( 10), 1372-1380.
doi: 10.1111/j.1469-8986.2011.01214.xURLpmid: 21564122
[63] Patel, A. D. ( 2003). Language, music, syntax and the brain. Nature Neuroscience, 6( 7), 674-681.
doi: 10.1038/nn1082URLpmid: 12830158
[64] Patel, A. D., ( 2014). Can nonlinguistic musical training change the way the brain processes speech? The expanded OPERA hypothesis. Hearing Research. 308, 98-108.
doi: 10.1016/j.heares.2013.08.011URLpmid: 24055761
[65] Patel, A. D., & Daniele, J. R. ( 2003). An empirical comparison of rhythm in language and music. Cognition, 87( 1), B35-B45.
doi: 10.1016/s0010-0277(02)00187-7URLpmid: 12499110
[66] Patel, A. D., Iversen, J. R., & Rosenberg, J. C. ( 2006). Comparing the rhythm and melody of speech and music: The case of British English and French. The Journal of the Acoustical Society of America, 119( 5), 3034-3047.
[67] Patel, A. D., Peretz, I., Tramo, M., & Labreque, R. ( 1998). Processing prosodic and musical patterns: A neuropsychological investigation. Brain and Language, 61( 1), 123-144.
doi: 10.1006/brln.1997.1862URLpmid: 9448936
[68] Perrin, F., & García-Larrea, L. ( 2003). Modulation of the N400 potential during auditory phonological/semantic interaction. Cognitive Brain Research, 17(1), 36-47.
doi: 10.1016/s0926-6410(03)00078-8URLpmid: 12763190
[69] Praamstra, P., & Stegeman, D. F. ( 1993). Phonological effects on the auditory N400 event-related brain potential. Cognitive Brain Research, 1( 2), 73-86.
doi: 10.1016/0926-6410(93)90013-uURLpmid: 8513242
[70] Rayner, K., Kambe, G., & Duffy, S. A. ( 2000). The effect of clause wrap-up on eye movements during reading. The Quarterly Journal of Experimental Psychology: Section A, 53( 4), 1061-1080.
[71] Reinke, K. S., He, Y., Wang, C. H., & Alain, C. ( 2003). Perceptual learning modulates sensory evoked response during vowel segregation. Cognitive Brain Research, 17( 3), 781-791.
doi: 10.1016/s0926-6410(03)00202-7URLpmid: 14561463
[72] Roden, I., Kreutz, G., & Bongard, S. ( 2012). Effects of a school-based instrumental music program on verbal and visual memory in primary school children: a longitudinal study. Frontiers in Neuroscience, 3, 572.
[73] Schirmer, A., Tang, S. L., Penney, T. B., Gunter, T. C., & Chen, H. C. ( 2005). Brain responses to segmentally and tonally induced semantic violations in Cantonese. Journal of Cognitive Neuroscience, 17( 1), 1-12.
doi: 10.1162/0898929052880057URLpmid: 15701235
[74] Sch?n, D., Besson, M., & Magne, C. L. ( 2004). The music of speech: music training facilitates pitch processing in both music and language. Psychophysiology, 41( 3), 341-349.
doi: 10.1111/1469-8986.00172.xURLpmid: 15102118
[75] Shahin, A., Bosnyak, D. J., Trainor, L. J., & Roberts, L. E. ( 2003). Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. Journal of Neuroscience, 23( 13), 5545-5552.
URLpmid: 12843255
[76] Shahin, A., Roberts, L. E., Pantev, C., Trainor, L. J., & Ross, B. ( 2005). Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds. NeuroReport, 16( 16), 1781-1785.
doi: 10.1097/01.wnr.0000185017.29316.63URLpmid: 16237326
[77] Slevc, L. R., Davey, N. S., Buschkuehl, M., & Jaeggi, S. M. ( 2016). Tuning the mind: Exploring the connections between musical ability and executive functions. Cognition, 152, 199-211.
doi: 10.1016/j.cognition.2016.03.017URLpmid: 27107499
[78] Steele, C. J., Bailey, J. A., Zatorre, R. J., & Penhune, V. B. ( 2013). Early musical training and white-matter plasticity in the corpus callosum: Evidence for a sensitive period. Journal of Neuroscience, 33( 3), 1282-1290.
doi: 10.1523/JNEUROSCI.3578-12.2013URLpmid: 23325263
[79] Steinhauer, K., Alter, K., & Friederici, A. D. ( 1999). Brain potentials indicate immediate use of prosodic cues in natural speech processing. Nature Neuroscience, 2( 2), 191-196.
doi: 10.1038/5757URLpmid: 10195205
[80] Tang, W., Xiong, W., Zhang, Y.-X., Dong, Q., & Nan, Y. ( 2016). Musical experience facilitates lexical tone processing among mandarin speakers: Behavioral and neural evidence. Neuropsychologia, 91, 247-253.
doi: 10.1016/j.neuropsychologia.2016.08.003URLpmid: 27503769
[81] Tong, Y., Francis, A. L., & Gandour, J. T. ( 2008). Processing dependencies between segmental and suprasegmental features in mandarin Chinese. Language and Cognitive Processes, 23( 5), 689-708.
[82] Tremblay, K., Kraus, N., McGee, T., Ponton, C., & Otis, B. ( 2001). Central auditory plasticity: Changes in the N1-P2 complex after speech-sound training. Ear and hearing, 22( 2), 79-90.
doi: 10.1097/00003446-200104000-00001URLpmid: 11324846
[83] Wang, X., Ossher, L., & Reuter-Lorenz, P. A. ( 2015). Examining the relationship between skilled music training and attention. Consciousness & Cognition, 36, 169-179.
URLpmid: 26160137
[84] Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. ( 2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10( 4), 420-422.
doi: 10.1038/nn1872URLpmid: 17351633
[85] Wu, H., Ma, X. H., Zhang, L. J., Liu, Y. Y., Yang, Z., & Hua, S. ( 2015). Musical experience modulates categorical perception of lexical tones in native chinese speakers. Frontiers in Psychology, 6, 436.
doi: 10.3389/fpsyg.2015.00436URLpmid: 25918511
[86] Wu, M. J., & Zhu, H. D. ( 2001). Chinese rhythmology. Beijing, China: Language & Culture Press.
[ 吴洁敏, 朱宏达. (2001). 汉语节律学. 北京: 语文出版社.]
[87] Zioga, I., Luft, C. D. B., & Bhattacharya, J. ( 2016). Musical training shapes neural responses to melodic and prosodic expectation. Brain Research, 1650, 267-282.
doi: 10.1016/j.brainres.2016.09.015URLpmid: 27622645




[1]于文勃, 王璐, 瞿邢芳, 王天琳, 张晶晶, 梁丹丹. 转换概率和词长期待对语音统计学习的影响[J]. 心理学报, 2021, 53(6): 565-574.
[2]雷震, 毕蓉, 莫李澄, 于文汶, 张丹丹. 外显和内隐情绪韵律加工的脑机制:近红外成像研究[J]. 心理学报, 2021, 53(1): 15-25.
[3]姚尧, 陈晓湘. 音乐训练对4~5岁幼儿普通话声调范畴感知能力的影响[J]. 心理学报, 2020, 52(4): 456-468.
[4]陈洁佳, 周翊, 陈杰. 音乐训练与抑制控制的关系:来自ERPs的证据[J]. 心理学报, 2020, 52(12): 1365-1376.
[5]胡金生, 李骋诗, 王琦, 李松泽, 李涛涛, 刘淑清. 孤独症青少年的情绪韵律注意偏向缺陷:低效率的知觉模式*[J]. 心理学报, 2018, 50(6): 637-646.
[6]李卫君, 刘梦, 张政华, 邓娜丽, 邢钰珊. 口吃者加工汉语歧义短语的神经过程[J]. 心理学报, 2018, 50(12): 1323-1335.
[7]郑志伟;黄贤军;张钦. 情绪韵律调节情绪词识别的ERP研究[J]. 心理学报, 2013, 45(4): 427-437.
[8]王异芳;苏彦捷;何曲枝. 3~5岁儿童基于声音线索的情绪知觉[J]. 心理学报, 2012, 44(11): 1472-1478.
[9]李卫君,杨玉芳. 绝句韵律边界的认知加工及其脑电效应[J]. 心理学报, 2010, 42(11): 1021-1032.
[10]覃薇薇,刘思耘,杨莉,周宗奎. 前分类声音存储器对声调和情绪韵律的加工[J]. 心理学报, 2010, 42(06): 651-662.
[11]梅磊磊,李燕芳,龙柚杉,陈传升,董奇. 材料呈现方式对不同音乐训练经验的汉语儿童英语言语记忆的影响[J]. 心理学报, 2008, 40(08): 883-889.
[12]郑波,王蓓,杨玉芳. 韵律对指代歧义的解歧作用及其机制[J]. 心理学报, 2002, 34(06): 15-20.
[13]仲晓波,王蓓,杨玉芳,吕士楠. 普通话韵律词重音知觉[J]. 心理学报, 2001, 33(6): 2-9.
[14]仲晓波,杨玉芳. 国外关于韵律特征和重音的一些研究[J]. 心理学报, 1999, 31(4): 468-475.
[15]杨玉芳. 词切分的韵律学线索[J]. 心理学报, 1992, 24(4): 59-65.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4740
相关话题/本科生 钢琴 心理 音乐 信息