删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

动作理解因境而异: 动作加工中情境信息的自动整合

本站小编 Free考研考试/2022-01-01

杨亦松, 林静, 何晓燕, 尹军()
宁波大学心理学系暨研究所; 宁波大学群体行为与社会心理服务研究中心, 浙江 宁波 315211
收稿日期:2019-09-02出版日期:2020-06-25发布日期:2020-04-22
通讯作者:尹军E-mail:yinjun1@nbu.edu.cn

基金资助:* 国家自然科学基金面上项目(31871091);宁波大学研究生科研创新基金(G19057)

Contextual modulation of action interpretation: Automatic integration of situational contexts during action understanding

YANG Yisong, LIN Jing, HE Xiaoyan, YIN Jun()
Department of Psychology, Ningbo University; Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo 315211, China
Received:2019-09-02Online:2020-06-25Published:2020-04-22
Contact:YIN Jun E-mail:yinjun1@nbu.edu.cn






摘要/Abstract


摘要: 针对动作理解的机制, 模拟论主张大脑自发模拟他人的动作, 就相同的动作其理解也相同, 而理论论则认为人们基于合理性原则对他人动作进行推理, 相同的动作发生在不同的情境时会有不同的理解。但以往研究所采用动作材料的运动学特性和发生情境存在共变, 其难以区分动作理解是支持模拟论还是理论论。通过两项实验, 采用动画制作技术来产生有无约束情境下的追逐动作, 以指示动作加工过程的脑电μ抑制为指标, 对前述两种观点进行了检验。其中, 在约束情境中存在障碍物, 追逐者需改变运动方向以绕过障碍物, 从后方逐渐趋近目标; 而无约束情境中不存在障碍物, 但追逐者依然保持与存在约束情景下相同的运动模式。结果发现, 当追逐动作发生在存在约束的情境时, 其基于合理性原则推测可获得清晰的动作目标, 该条件下的μ抑制程度高于不存在约束情境的条件(实验1); 而当仅追逐者运动, 即趋近的目标不确定时, 虽然有约束和无约束情境间的物理差异与实验1相同, 但条件间μ抑制的差异消失(实验2); 且上述μ抑制并非与注意相关的枕叶α活动的泛化。该结果提示, 动作发生的情境信息影响人们对动作的理解, 即基于推理过程理解动作, 支持理论论观点。



图1存在约束情境(a)和不存在约束情境(b)的动作示意图
图1存在约束情境(a)和不存在约束情境(b)的动作示意图



图2实验流程
图2实验流程


表1实验1和实验2中有无约束情境下不同脑电指标的能量值(μV2)
脑电指标 实验1: 追逐者和目标物均运动 实验2: 追逐者运动但目标物静止
有约束的情境 无约束的情境 有约束的情境 无约束的情境
顶叶μ -1.955 (0.565) -1.913 (0.564) -1.929 (0.559) -1.936 (0.569)
顶叶β -0.093 (0.026) -0.076 (0.030) -0.084 (0.028) -0.082 (0.028)
枕叶α -3.782 (1.135) -3.771 (1.138) -3.761 (1.132) -3.749 (1.133)

表1实验1和实验2中有无约束情境下不同脑电指标的能量值(μV2)
脑电指标 实验1: 追逐者和目标物均运动 实验2: 追逐者运动但目标物静止
有约束的情境 无约束的情境 有约束的情境 无约束的情境
顶叶μ -1.955 (0.565) -1.913 (0.564) -1.929 (0.559) -1.936 (0.569)
顶叶β -0.093 (0.026) -0.076 (0.030) -0.084 (0.028) -0.082 (0.028)
枕叶α -3.782 (1.135) -3.771 (1.138) -3.761 (1.132) -3.749 (1.133)



图3不同条件下顶叶(a)和枕叶(b) 8~13 Hz频段能量值 注: *p < 0.05; 误差条为去除被试间变异后的标准误(Cousineau & O’Brien, 2014)
图3不同条件下顶叶(a)和枕叶(b) 8~13 Hz频段能量值 注: *p < 0.05; 误差条为去除被试间变异后的标准误(Cousineau & O’Brien, 2014)



图4实验1和实验2不同条件下8~13 Hz频段能量地形图(a)及条件间能量差异地形图(b)
图4实验1和实验2不同条件下8~13 Hz频段能量地形图(a)及条件间能量差异地形图(b)







[1] Amoruso, L., & Urgesi, C . (2016). Contextual modulation of motor resonance during the observation of everyday actions. Neuroimage, 134, 74-84.
[2] Baker, C. L., Saxe, R., & Tenenbaum, J. B . (2009). Action understanding as inverse planning. Cognition, 113(3), 329-349.
[3] Barrett, H. C., Todd, P. M., Miller, G. F., & Blythe, P.W . (2005). Accurate judgments of intention from motion cues alone: A cross-cultural study. Evolution and Human Behavior, 26(4), 313-331.
[4] Blakemore, S. J., & Decety, J . (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561-567.
[5] Brainard, D. H . (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433-436.
[6] Brass, M., Schmitt, R. M., Spengler, S., & Gergely, G . (2007). Investigating action understanding: Inferential processes versus action simulation. Current Biology, 17(24), 2117-2121.
[7] Brown, E. C., Wiersema, J. R., Pourtois, G., & Brüne, M . (2013). Modulation of motor cortex activity when observing rewarding and punishing actions. Neuropsychologia, 51(1), 52-58.
[8] Carter Leno, V., Vitoratou, S., Kent, R., Charman, T., Chandler, S., Jones, C. R., ... Simonoff, E . (2019). Exploring the neurocognitive correlates of challenging behaviours in young people with autism spectrum disorder. Autism, 23(5), 1152-1164.
[9] Cavallo, A., Koul, A., Ansuini, C., Capozzi, F., & Becchio, C . (2016). Decoding intentions from movement kinematics. Scientific Reports, 6, 37036.
[10] Chartrand, T. L., & Bargh, J. A . (1999). The chameleon effect: The perception-behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893-910.
[11] Cracco, E., de Coster, L., Andres, M., & Brass, M . (2016). Mirroring multiple agents: motor resonance during action observation is modulated by the number of agents. Social Cognitive and Affective Neuroscience, 11(9), 1422-1427.
[12] Csibra, G . (2007). Action mirroring and action understanding: An alternative account. In: P. Haggard, Y. Rosetti, & M. Kawato (Eds.), Sensorimotor foundations of higher cognition (attention and performance XXII) (pp. 435-459). Oxford: Oxford University Press.
[13] Csibra, G., Bíró, S., Koós, O., & Gergely, G . (2003). One-year- old infants use teleological representations of actions productively. Cognitive Science, 27(1), 111-133.
[14] Csibra, G., & Gergely, G . (2007). “Obsessed with goals”: Functions and mechanisms of teleological interpretation of actions in humans. Acta Psychologica, 124(1), 60-78.
[15] Cousineau, D., & O'Brien, F . (2014). Error bars in within- subject designs: A comment on Baguley (2012). Behavior Research Methods, 46(4), 1149-1151.
[16] Dijkerman, H. C., & Smit, M. C . (2007). Interference of grasping observation during prehension, a behavioural study. Experimental Brain Research, 176, 387-396.
[17] di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G . (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176-180.
[18] Duan, J. P., Yang, Z. X., He, X. Y., Shao, M. X., & Yin, J . (2018). Automatic attribution of social coordination information to chasing scenes: Evidence from mu suppression. Experimental Brain Research, 236(1), 117-127.
[19] Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G . (2005). Parietal lobe: From action organization to intention understanding. Science, 308(5722), 662-667.
[20] Fox, N. A., Bakermans-Kranenburg, M. J., Yoo, K. H., Bowman, L. C., Cannon, E. N., Vanderwert, R. E., ... van Ijzendoorn, M. H . (2016). Assessing human mirror activity with EEG Mu rhythm: A meta-analysis. Psychological Bulletin, 142(3), 291-313.
[21] Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G . (1996). Action recognition in the premotor cortex. Brain, 119(2), 593-609.
[22] Gallese, V., & Goldman, A . (1998) Mirror neurons and the simulation theory of mind reading. Trends in Cognitive Sciences, 2(12), 493-501.
[23] Gergely, G., Bekkering, H., & Király, I . (2002). Developmental psychology: Rational imitation in preverbal infants. Nature, 415(6873), 755.
[24] Gergely, G., & Csibra, G . (2003). Teleological reasoning in infancy: The na?ve theory of rational action. Trends in Cognitive Sciences, 7(7), 287-292.
[25] Hauser, M., & Wood, J . (2010). Evolving the capacity to understand actions, intentions, and goals. Annual Review of Psychology, 61, 303-324.
[26] Heider, F., & Simmel, M . (1944). An experimental study of apparent behavior. The American Journal of Psychology, 57, 243-259.
[27] Hobson, H. M., & Bishop, D. V. M . (2016). Mu suppression-a good measure of the human mirror neuron system? Cortex, 82, 290-310.
[28] Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G . (2005). Grasping the intentions of others with one's own mirror neuron system. PLoS Biology, 3(3), e79.
[29] Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., Rizzolatti, G . (1999). Cortical mechanisms of human imitation. Science, 286, 2526-2528.
[30] Jacob, P., & Jeannerod, M . (2005) The motor theory of social cognition: A critique. Trends in Cognitive Sciences, 9(1), 21-25.
[31] Jara-Ettinger, J., Gweon, H., Schulz, L. E., & Tenenbaum, J. B . (2016). The na?ve utility calculus: Computational principles underlying commonsense psychology. Trends in Cognitive Sciences, 20(8), 589-604.
[32] Kamewari, K., Kato, M., Kanda, T., Ishiguro, H., & Hiraki, K . (2005). Six-and-a-half-month-old children positively attribute goals to human action and to humanoid-robot motion. Cognitive Development, 20(2), 303-320.
[33] Kilner, J. M., Paulignan, Y., & Blakemore, S. J . (2003). An interference effect of observed biological movement on action. Current Biology, 13( 6), 522-525.
[34] Klimesch, W., Sauseng, P., & Hanslmayr, S . (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63-88.
[35] Klin, A., Jones, W., Schultz, R., & Volkmar, F . (2003). The enactive mind, or from actions to cognition: Lessons from autism. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1430), 345-360.
[36] Koski, L., Wohlschl?ger, A., Bekkering, H., Woods, R. P., Dubeau, M. C., Mazziotta, J. C., & Iacoboni, M . (2002). Modulation of motor and premotor activity during imitation of target-directed actions. Cerebral Cortex, 12(8), 847-855.
[37] Koul, A., Cavallo, A., Cauda, F., Costa, T., Diano, M., Pontil, M., & Becchio, C . (2018). Action observation areas represent intentions from subtle kinematic features. Cerebral Cortex, 28(7), 2647-2654.
[38] Liepelt, R., Cramon, D. Y., & Brass, M . (2008). What is matched in direct matching? Intention attribution modulates motor priming. Journal of Experimental Psychology: Human Perception and Performance, 34(3), 578-591.
doi: 10.1037/0096-1523.34.3.578URL
[39] Luo, Y. Y . (2011). Three-month-old infants attribute goals to a non-human agent. Developmental Science, 14(2), 453-460.
doi: 10.1111/desc.2011.14.issue-2URL
[40] Maris, E., & Oostenveld, R . (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of Neuroscience Methods, 164(1), 177-190.
[41] Marsh, L. E., Mullett, T. L., Ropar, D., & Hamilton, A. F. D. C . (2014). Responses to irrational actions in action observation and mentalising networks of the human brain. NeuroImage, 103, 81-90.
[42] Miller, S . (2001). Social action: A teleological account. Cambridge: Cambridge University Press.
[43] Muthukumaraswamy, S. D., Johnson, B. W., & McNair, N. A . (2004). Mu rhythm modulation during observation of an object-directed grasp. Cognitive Brain Research, 19(2), 195-201.
[44] Natraj, N., Poole, V., Mizelle, J. C., Flumini, A., Borghi, A. M., & Wheaton, L. A . (2013). Context and hand posture modulate the neural dynamics of tool-object perception. Neuropsychologia, 51(3), 506-519.
[45] Onishi, K. H., Baillargeon, R., & Leslie, A. M . (2007). 15-month- old infants detect violations in pretend scenarios. Acta Psychologica, 124(1), 106-128.
[46] Perry, A., Stein, L., & Bentin, S . (2011). Motor and attentional mechanisms involved in social interaction—Evidence from mu and alpha EEG suppression. Neuroimage, 58(3), 895-904.
doi: 10.1016/j.neuroimage.2011.06.060URL
[47] Pomiechowska, B., & Csibra, G . (2017). Motor activation during action perception depends on action interpretation. Neuropsychologia, 105, 84-91.
[48] Powell, L. J., & Spelke, E. S . (2013). Preverbal infants expect members of social groups to act alike. Proceedings of the National Academy of Sciences, 110(41), E3965-E3972.
[49] Rizzolatti, G., & Craighero, L . (2004) The mirror-neuron system. Annual Review of Neuroscience, 27(1), 169-192.
[50] Rizzolatti, G., Fogassi, L., & Gallese, V . (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Review Neuroscience, 2(9), 661-670.
[51] Sommerville, J. A., Woodward, A. L., & Needham, A . (2005). Action experience alters 3-month-old infants' perception of others' actions. Cognition, 96(1), B1-B11.
[52] Southgate, V., & Csibra, G . (2009). Inferring the outcome of an ongoing novel action at 13 months. Developmental Psychology, 45(6), 1794-1798.
[53] Tangwiriyasakul, C., Verhagen, R., van Putten, M. J. A. M., & Rutten, W. L. C . (2013). Importance of baseline in event- related desynchronization during a combination task of motor imagery and motor observation. Journal of Neural Engineering, 10(2), 026009.
[54] Ullman, T. D., Baker, C. L., Macindoe, O., Evans, O., Goodman, N. D., & Tenenbaum, J. B . (2009). Help or hinder: Bayesian models of social goal inference. In Y. Bengio et al.(Eds.), Advances in neural information processing systems 22. Vancouver: NIPS Foundation.
[55] Ulloa, E. R., & Pineda, J. A . (2007). Recognition of point-light biological motion: Mu rhythms and mirror neuron activity. Behavioural Brain Research, 183(2), 188-194.
[56] Wellman, H. M., Cross, D., & Watson, J . (2001). Meta-analysis of theory-of-mind development: The truth about false belief. Child Development, 72(3), 655-684.
doi: 10.1111/cdev.2001.72.issue-3URL
[57] Ye, H. S . (2016). The significances of mirror neurons. Acta Psychologica Sinica, 48(4), 444-456.
doi: 10.3724/SP.J.1041.2016.00444URL
[ 叶浩生 . (2016). 镜像神经元的意义. 心理学报, 48(4), 444-456.]
[58] Yin, J., Xu, H. K., Ding, X. W., Liang, J. Y., Shui, R. D., & Shen, M. W . (2016). Social constraints from an observer's perspective: Coordinated actions make an agent's position more predictable. Cognition, 151, 10-17.
doi: 10.1016/j.cognition.2016.02.009URL




[1]高娟, 王鹏, 王晓田, 孙倩, 刘永芳. 得失情境下他人参照点及心理距离对自我-他人利益权衡的影响[J]. 心理学报, 2020, 52(5): 633-644.
[2]徐岚, 蒋怡然, 崔楠, 张留霞, 赵帅勤. 最心安处是吾乡:本体安全感威胁对家乡品牌偏好的影响[J]. 心理学报, 2020, 52(4): 513-527.
[3]孙岩, 吕娇娇, 兰帆, 张丽娜. 自我关注重评和情境关注重评情绪调节策略及对随后认知控制的影响[J]. 心理学报, 2020, 52(12): 1393-1406.
[4]刘璐,肖雪,刘丽莎,徐良苑,张旭然,李燕芳. 儿童在不同卷入情境下基于资源价值的分配行为特点:内群体偏爱的作用[J]. 心理学报, 2019, 51(5): 584-597.
[5]Nicolao Bonini, Constantinos Hadjichristidis, Michele Graffeo. 绿色助推[J]. 心理学报, 2018, 50(8): 814-826.
[6]张奇勇, 闫志英. 消极前情绪对积极情绪感染的调节:反向与降阈——以教学情境为例[J]. 心理学报, 2018, 50(10): 1131-1141.
[7]佐斌, 温芳芳, 吴漾, 代涛涛. 群际评价中热情与能力关系的情境演变:评价意图与结果的作用[J]. 心理学报, 2018, 50(10): 1180-1196.
[8]白鹭, 毛伟宾, 王蕊, 张文海. 自然场景与身体动作对面孔表情识别的影响[J]. 心理学报, 2017, 49(9): 1172-1183.
[9]陈庆;何泉;陈广耀;郭悦智;张荷婧;何先友. 复杂情境下不同角度及思维方式的决策表现差异:决策视角−心理距离的作用[J]. 心理学报, 2017, 49(3): 383-392.
[10]何贵兵, 杨鑫蔚, 蒋多. 环境损益的社会折扣:利他人格的影响[J]. 心理学报, 2017, 49(10): 1334-1343.
[11]黎晓丹; 杜建政; 叶浩生. 中国礼文化的具身隐喻效应:蜷缩的身体使人更卑微[J]. 心理学报, 2016, 48(6): 746-756.
[12]尹可丽;包广华;钱丽梅;马霓珊. 景颇族初中生的民族社会化觉察及其特征[J]. 心理学报, 2016, 48(1): 36-47.
[13]闫志英;卢家楣. 情境真实性对悲伤移情调节的ERP证据[J]. 心理学报, 2015, 47(8): 971-980.
[14]陈洁彬;鲁忠义. 路径转弯对语篇空间情境模型建构的影响[J]. 心理学报, 2015, 47(2): 176-189.
[15]金艳;郑希付. 女性生理周期对条件性恐惧习得和消退的影响[J]. 心理学报, 2015, 47(12): 1465-1471.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4714
相关话题/实验 心理 运动 指标 宁波大学