删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

发展性阅读障碍儿童阅读中的眼跳定位缺陷:基于新词学习的实验证据

本站小编 Free考研考试/2022-01-01

梁菲菲(), 马杰, 李馨, 连坤予, 谭珂, 白学军()
天津师范大学心理与行为研究院, 天津 300074
收稿日期:2018-11-28出版日期:2019-07-25发布日期:2019-05-22
通讯作者:梁菲菲,白学军E-mail:feifeiliang_329@126.com;baixuejun@tjnu.edu.cn

基金资助:* 国家自然科学基金项目(31600902);国家自然科学基金项目(81471629);国家自然科学基金项目(31571122);天津市哲学社会科学规划课题(TJJX16-013)

Saccadic targeting deficits of Chinese children with developmental dyslexia: Evidence from novel word learning in reading

LIANG Feifei(), MA Jie, LI Xin, LIAN Kunyu, TAN Ke, BAI Xuejun()
Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300074, China
Received:2018-11-28Online:2019-07-25Published:2019-05-22
Contact:LIANG Feifei,BAI Xuejun E-mail:feifeiliang_329@126.com;baixuejun@tjnu.edu.cn






摘要/Abstract


摘要: 通过与生理年龄匹配儿童比较新词重复学习中眼跳定位模式变化的异同, 探讨发展性阅读障碍儿童在新词学习中的眼跳定位是否存在缺陷。以发展性阅读障碍儿童和生理年龄匹配儿童为被试, 采用重复学习新词范式, 结果发现:(1)与生理年龄匹配组相比, 发展性阅读障碍儿童跳入新词的眼跳距离较短、首次注视落点位置更靠近词首; (2)生理年龄匹配组儿童利用学习次数调节新词眼跳定位模式的能力高于发展性阅读障碍儿童, 即随着新词学习次数的增加, 生理年龄匹配组儿童跳入和跳出新词的眼跳距离随之增长, 首次注视落点位置更靠近词中心; 相比之下, 发展性阅读障碍儿童仅在跳出新词的眼跳距离上有所增长, 但增加幅度也显著小于生理年龄匹配组。结果表明, 发展性阅读障碍儿童在新词学习中的眼跳定位, 及利用学习次数对眼跳定位的调节上均表现出一定缺陷。


表1各年龄组被试的平均年龄及各项测验成绩
各项测验 DD组 CA组 t
年龄(月) 126 (6.20) 129 (8.46) 1.47
智力(标准分) 107 (11) 110 (11) 1.07
识字量(字) 2122 (237) 2963 (199) 12.24***
正字法意识 71 (7.58) 79 (6.33) 3.81**
语音意识
音节判断 34 (2.42) 36 (0.59) 2.91**
音位删除 10 (4.51) 17 (5.32) 5.21***
声母/韵母/声调辨别 28 (3.52) 30 (4.29) 1.63
言语工作记忆
数字广度(顺背+倒背) 14 (2.76) 17 (2.71) 3.11**
汉字广度 8.95 (2.44) 9.14 (1.83) 0.31
快速命名(RAN)
数字RAN反应时 24 (4.82) 21 (2.19) 3.14**
字母RAN反应时 30 (7.01) 23 (2.34) 3.87***
颜色RAN反应时 48 (8.07) 42 (6.72) 3.40**
阅读流畅性
一分钟读词(词/分) 82 (12) 94 (12) 2.87**
三分钟阅读(字) 359 (81) 521 (65) 7.04***

表1各年龄组被试的平均年龄及各项测验成绩
各项测验 DD组 CA组 t
年龄(月) 126 (6.20) 129 (8.46) 1.47
智力(标准分) 107 (11) 110 (11) 1.07
识字量(字) 2122 (237) 2963 (199) 12.24***
正字法意识 71 (7.58) 79 (6.33) 3.81**
语音意识
音节判断 34 (2.42) 36 (0.59) 2.91**
音位删除 10 (4.51) 17 (5.32) 5.21***
声母/韵母/声调辨别 28 (3.52) 30 (4.29) 1.63
言语工作记忆
数字广度(顺背+倒背) 14 (2.76) 17 (2.71) 3.11**
汉字广度 8.95 (2.44) 9.14 (1.83) 0.31
快速命名(RAN)
数字RAN反应时 24 (4.82) 21 (2.19) 3.14**
字母RAN反应时 30 (7.01) 23 (2.34) 3.87***
颜色RAN反应时 48 (8.07) 42 (6.72) 3.40**
阅读流畅性
一分钟读词(词/分) 82 (12) 94 (12) 2.87**
三分钟阅读(字) 359 (81) 521 (65) 7.04***


表2实验材料举例
学习阶段 语境编号 例句
阶段1 语境1 空荡荡的鞋懂里摆放着许多桌子。
语境2 每天有许多人在鞋懂里随意出入。
语境3 他们经常在鞋懂里举行大型活动。
语境4 这座雄伟的鞋懂的设计十分新颖。
阶段2 语境5 在通风处建造鞋懂是明智的选择。
语境6 人们没有养成给鞋懂上锁的习惯。
语境7 妹妹喜欢在鞋懂里的游戏场玩耍。
语境8 开发区里新建的鞋懂有几十栋。
语义类别选择题目:请选择“鞋懂”属于以下哪个类别?
(1)桥梁 (2)纪念碑 (3)楼房 (4)博物馆

表2实验材料举例
学习阶段 语境编号 例句
阶段1 语境1 空荡荡的鞋懂里摆放着许多桌子。
语境2 每天有许多人在鞋懂里随意出入。
语境3 他们经常在鞋懂里举行大型活动。
语境4 这座雄伟的鞋懂的设计十分新颖。
阶段2 语境5 在通风处建造鞋懂是明智的选择。
语境6 人们没有养成给鞋懂上锁的习惯。
语境7 妹妹喜欢在鞋懂里的游戏场玩耍。
语境8 开发区里新建的鞋懂有几十栋。
语义类别选择题目:请选择“鞋懂”属于以下哪个类别?
(1)桥梁 (2)纪念碑 (3)楼房 (4)博物馆


表3两组新词的材料特性
目标词属性 组1 组2 t
字频 317 300 0.14
笔画数 8.83 8.50 0.45
词素位置概率(首字) 0.50 0.50 1.19
词素位置概率(尾字) 0.50 0.50 1.19
平均联想值 1.04 1.01 1.13
句子通顺性 4.49 4.45 1.64
句子难度 4.54 4.54 0.18

表3两组新词的材料特性
目标词属性 组1 组2 t
字频 317 300 0.14
笔画数 8.83 8.50 0.45
词素位置概率(首字) 0.50 0.50 1.19
词素位置概率(尾字) 0.50 0.50 1.19
平均联想值 1.04 1.01 1.13
句子通顺性 4.49 4.45 1.64
句子难度 4.54 4.54 0.18



图1新词兴趣区的划分
图1新词兴趣区的划分


表4DD组和CA组在两组实验材料上的眼跳定位
注视位置指标 DD组 CA组
材料1 材料2 材料1 材料2
平均首次注视位置(字) 0.87 (0.51) 0.77 (0.52) 1.01 (0.52) 0.89 (0.52)
跳入新词眼跳距离(字) 2.21 (0.99) 1.96 (0.97) 2.51 (0.89) 2.34 (0.90)
跳出新词眼跳距离(字) 2.23 (1.26) 2.04 (1.04) 2.33 (1.08) 2.41 (0.99)

表4DD组和CA组在两组实验材料上的眼跳定位
注视位置指标 DD组 CA组
材料1 材料2 材料1 材料2
平均首次注视位置(字) 0.87 (0.51) 0.77 (0.52) 1.01 (0.52) 0.89 (0.52)
跳入新词眼跳距离(字) 2.21 (0.99) 1.96 (0.97) 2.51 (0.89) 2.34 (0.90)
跳出新词眼跳距离(字) 2.23 (1.26) 2.04 (1.04) 2.33 (1.08) 2.41 (0.99)


表5材料类别在眼跳目标分析指标上的固定效应估计值
组别 模型 平均首次注视位置 跳入新词眼跳距离 跳出新词眼跳距离
b SE t CI b SE t CI b SE t CI
DD组 截距 0.97 0.11 9.20*** 0.76~1.17 2.64 0.33 8.10*** 2.00~3.27 2.72 0.45 6.03*** 1.83~3.60
材料类别 -0.08 0.07 -1.22 -0.21~0.05 -0.30 0.21 -1.45 -0.70~0.11 -0.31 0.29 -1.08 -0.87~0.25
CA组 截距 1.11 0.09 11.95*** 0.93~1.29 2.68 0.24 11.09*** 2.21~3.15 2.29 0.33 7.02*** 1.65~2.93
材料类别 -0.11 0.06 -1.86 -0.22~0.01 -0.17 0.15 -1.09 -0.47~0.13 0.09 0.21 0.42 -0.32~0.49

表5材料类别在眼跳目标分析指标上的固定效应估计值
组别 模型 平均首次注视位置 跳入新词眼跳距离 跳出新词眼跳距离
b SE t CI b SE t CI b SE t CI
DD组 截距 0.97 0.11 9.20*** 0.76~1.17 2.64 0.33 8.10*** 2.00~3.27 2.72 0.45 6.03*** 1.83~3.60
材料类别 -0.08 0.07 -1.22 -0.21~0.05 -0.30 0.21 -1.45 -0.70~0.11 -0.31 0.29 -1.08 -0.87~0.25
CA组 截距 1.11 0.09 11.95*** 0.93~1.29 2.68 0.24 11.09*** 2.21~3.15 2.29 0.33 7.02*** 1.65~2.93
材料类别 -0.11 0.06 -1.86 -0.22~0.01 -0.17 0.15 -1.09 -0.47~0.13 0.09 0.21 0.42 -0.32~0.49


表6新词的眼跳目标和注视位置分析
注视位置指标 DD组 CA组
学习阶段1 学习阶段2 学习阶段1 学习阶段2
平均首次注视位置(字) 0.84 (0.51) 0.80 (0.53) 0.91 (0.51) 0.98 (0.53)
跳入新词眼跳距离(字) 2.11 (1.02) 2.05 (0.95) 2.41 (0.92) 2.45 (0.88)
跳出新词眼跳距离(字) 2.08 (1.20) 2.19 (1.11) 2.23 (1.01) 2.50 (1.05)
再注视比率(%) 53 (50) 44 (50) 44 (50) 30 (46)

表6新词的眼跳目标和注视位置分析
注视位置指标 DD组 CA组
学习阶段1 学习阶段2 学习阶段1 学习阶段2
平均首次注视位置(字) 0.84 (0.51) 0.80 (0.53) 0.91 (0.51) 0.98 (0.53)
跳入新词眼跳距离(字) 2.11 (1.02) 2.05 (0.95) 2.41 (0.92) 2.45 (0.88)
跳出新词眼跳距离(字) 2.08 (1.20) 2.19 (1.11) 2.23 (1.01) 2.50 (1.05)
再注视比率(%) 53 (50) 44 (50) 44 (50) 30 (46)


表7组别和学习阶段在眼跳目标分析指标上的固定效应估计值
模型 平均首次注视位置 跳入新词眼跳距离 跳出新词眼跳距离 再注视比率
b SE t CI b SE t CI b SE t CI b SE t CI
截距 1.14 0.03 35.67*** 1.08~
1.20
1.14 0.03 35.67*** 1.08~
1.20
2.26 0.08 26.65*** 2.09~
2.42
-0.67 0.14 -4.81*** -0.94~-0.40
组别 -0.12 0.06 -2.14* -0.23~
-0.01
-0.12 0.06 -2.14* -0.23~-0.01 -0.15 0.16 -0.94 -0.45~0.16 0.42 0.24 1.74 -0.05~0.90
学习阶段 0.02 0.02 1.13 -0.01~
0.05
0.02 0.02 1.13 -0.01~0.05 0.17 0.03 5.18*** 0.11~
0.24
-0.56 0.07 -7.52*** -0.71~-0.42
起跳位置 -0.17 0.01 -18.27*** -0.19~
-0.15
0.83 0.01 87.24*** 0.81~
0.85
0.13 0.01 9.31*** 0.10~
0.15
0.18 0.04 4.04*** 0.09~
0.26
组别×学习阶段 -0.10 0.03 -2.93** -0.16~
-0.03
-0.10 0.03 -2.93** -0.16~-0.03 -0.13 0.07 -1.94 -0.26~0.00 0.22 0.15 1.50 -0.07~0.52
比较1:DD 0.03 0.02 1.10 -0.02~
0.07
0.04 0.04 1.00 -0.04~0.12 -0.13 0.05 -2.72** -0.22~-0.04
比较2:CA -0.07 0.02 -2.95** -0.12~
-0.02
-0.04 0.04 -1.10 -0.13~0.04 -0.28 0.05 -5.85*** -0.37~-0.18

表7组别和学习阶段在眼跳目标分析指标上的固定效应估计值
模型 平均首次注视位置 跳入新词眼跳距离 跳出新词眼跳距离 再注视比率
b SE t CI b SE t CI b SE t CI b SE t CI
截距 1.14 0.03 35.67*** 1.08~
1.20
1.14 0.03 35.67*** 1.08~
1.20
2.26 0.08 26.65*** 2.09~
2.42
-0.67 0.14 -4.81*** -0.94~-0.40
组别 -0.12 0.06 -2.14* -0.23~
-0.01
-0.12 0.06 -2.14* -0.23~-0.01 -0.15 0.16 -0.94 -0.45~0.16 0.42 0.24 1.74 -0.05~0.90
学习阶段 0.02 0.02 1.13 -0.01~
0.05
0.02 0.02 1.13 -0.01~0.05 0.17 0.03 5.18*** 0.11~
0.24
-0.56 0.07 -7.52*** -0.71~-0.42
起跳位置 -0.17 0.01 -18.27*** -0.19~
-0.15
0.83 0.01 87.24*** 0.81~
0.85
0.13 0.01 9.31*** 0.10~
0.15
0.18 0.04 4.04*** 0.09~
0.26
组别×学习阶段 -0.10 0.03 -2.93** -0.16~
-0.03
-0.10 0.03 -2.93** -0.16~-0.03 -0.13 0.07 -1.94 -0.26~0.00 0.22 0.15 1.50 -0.07~0.52
比较1:DD 0.03 0.02 1.10 -0.02~
0.07
0.04 0.04 1.00 -0.04~0.12 -0.13 0.05 -2.72** -0.22~-0.04
比较2:CA -0.07 0.02 -2.95** -0.12~
-0.02
-0.04 0.04 -1.10 -0.13~0.04 -0.28 0.05 -5.85*** -0.37~-0.18







[1] Baayen R. H., Davidson D. J., & Bates D. M . ( 2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory & Language, 59( 4), 390-412.
[2] Bai X. J., Meng H. X., Wang J. X., Tian J., Zang C. L., & Yan G. L . ( 2011). The landing positions of dyslexic, age-matched and ability-matched children during reading spaced text. Acta Psychologica Sinica, 43( 8), 851-862.
[ 白学军, 孟红霞, 王敬欣, 田静, 臧传丽, 闫国利 . ( 2011). 阅读障碍儿童与其年龄和能力匹配儿童阅读空格文本的注视位置效应. 心理学报, 43( 8), 851-862.]
[3] Bai X. J., Ma J., Lin X., Lian K. Y., Tan K., Yang Y., & Liang F. F . ( 2019). The efficiency and improvement of novel word’s learning in Chinese children with developmental dyslexia during natural reading. Acta Psychologica Sinica, 51 ( 4), 471-483.
[ 白学军, 马杰, 李馨, 连坤予, 谭珂, 杨宇, 梁菲菲 . ( 2019). 发展性阅读障碍儿童的新词习得及其改善. 心理学报, 51( 4), 471-483.]
[4] Bai X. J., Zhang M. Z., Meng H. X., Tan K., & Wang W . ( 2018). The effects of word segmentation on Chinese developmental dyslexia: A comparison in oral and silent sentence reading. Studies of Psychology and Behavior, 16( 5), 594-602.
[ 白学军, 张明哲, 孟红霞, 谭珂, 王雯 . ( 2018). 词边界信息对发展性阅读障碍儿童朗读和默读影响的眼动研究. 心理与行为研究, 16( 5), 594-602.]
[5] Bates D., Maechler M., & Bolker B . ( 2012). Lme4: Linear mixed-effects models using S4 classes. R package version 0. 999375-42.
[6] Blythe H. I. & Joseph, H. S. S. L.. ,( 2011). Children’s eye movements during reading. In S. P. Liversedge, I. D. Gilchrist, & S. Everling (Eds.), The Oxford Handbook of Eye Movements (pp. 643-662). Oxford, England: Oxford University Press.
[7] Blythe H. I., Liang F. F., Zang C. L., Wang J. X., Yan G. L., Bai X. J., & Liversedge S. P . ( 2012). Inserting spaces into Chinese text helps readers to learn new words: An eye movement study. Journal of Memory & Language, 67( 2), 241-254.
[8] Chaffin R., Morris R. K., & Seely R. E . ( 2001). Learning new word meanings from context: A study of eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27( 1), 225-235.
[9] Cheng Y., Li L., & Wu X . ( 2015). The reciprocal relationship between compounding awareness and vocabulary knowledge in Chinese: A latent growth model study. Frontiers in Psychology, 6, 440.
[10] Chu M. M. K., & Leung M. T . ( 2005). Reading strategy of Hong Kong school-aged children: The development of word-level and character-level processing. Applied Psycholinguistics, 26( 4), 505-520.
[11] Cutter M. G., Drieghe D., & Liversedge S. P . ( 2017). Reading sentences of uniform word length: Evidence for the adaptation of the preferred saccade length during reading. Journal of Experimental Psychology: Human Perception and Performance, 43( 11), 1895-1911.
[12] Denckla M. B., & Rudel R. , ( 1974). Rapid “automatized” naming of pictured objects, colors, letters and numbers by normal children. Cortex, 10( 2), 186-202.
[13] Engbert R., Nuthmann A., Richter E.M., & Kliegl R . ( 2005). Swift: a dynamical model of saccade generation during reading. Psychological Review, 112( 4), 777-813.
doi: 10.1037/0033-295X.112.4.777URL
[14] Freedman E. G., Molholm S., Gray M. J., Belyusar D., & Foxe J. J . ( 2017). Saccade adaptation deficits in developmental dyslexia suggest disruption of cerebellar-dependent learning. Journal of Neurodevelopmental Disorders, 9( 1), 1-8.
[15] Guo Z. Y., Tan K., Song X., Peng G. H., & Bai X. J . ( 2018). The modulation of visual complexity and character-spacing on the visual crowding effect of Chinese-speaking children with developmental dyslexia: Evidence from eye movements. Studies of Psychology and Behavior, 16( 5), 603-611.
[ 郭志英, 谭珂, 宋星, 彭国慧, 白学军 . ( 2018). 视觉复杂性和字间距调节汉语发展性阅读障碍儿童的视觉拥挤效应:来自眼动的证据. 心理与行为研究, 16( 5), 603-611.]
[16] Ho C. S-H., Chan D. W-O., Tsang S-M., & Lee S-H . ( 2002). The cognitive profile and multiple-deficit hypothesis in Chinese developmental dyslexia. Developmental Psychology, 38( 4), 543-553.
[17] Ho S. H., Law P. S., & Ng P. M . ( 2000). The phonological deficit hypothesis in Chinese developmental dyslexia. Reading & Writing, 13( 1-2), 57-79.
[18] Hyönä J., Yan M., & Vainio S . ( 2018). Morphological structure influences the initial landing position in words during reading Finnish. The Quarterly Journal of Experimental Psychology, 71( 1), 122-130.
[19] Joseph H. & Nation K. ,( 2018). Examining incidental word learning during reading in children: The role of context. Journal of Experimental Child Psychology, 166, 190-211.
[20] Joseph H. S. S. L., Liversedge S. P., Blythe H. I., White S. J., & Rayner K . ( 2009). Word length and landing position effects during reading in children and adults. Vision Research, 49( 16), 2078-2086.
[21] Joseph H. S. S. L., Wonnacott E., Forbes P., & Nation K . ( 2014). Becoming a written word: Eye movements reveal order of acquisition effects following incidental exposure to new words during silent reading. Cognition, 133( 1), 238-248.
[22] Kuhn M. R., & Stahl S. A . ( 1998). Teaching children to learn word meanings from context: A synthesis and some questions. Journal of Literacy Research, 30( 1), 119-138.
doi: 10.1080/10862969809547983URL
[23] Li D., Hu K. D., Chen G. P., Jin Y., & Li M . ( 1988). Test report of Raven's Progressive Matrices (CRT) of Shanghai city. Journal of Psychological Science, ( 4), 29-33.
[ 李丹, 胡克定, 陈国鹏, 金瑜, 李眉 . ( 1988). 瑞文测验联合型(CRT)上海市区试测报告. 心理科学, ( 4), 29-33.]
[24] Li X., Wang W., Liang F. F., Yang Y., Lian. K. Y., Zhang M. Z., & Bai X. J . ( 2019). Explaining RAN deficit of Chinese children with developmental dyslexia: The controversy between parafoveal preview benefit and parafoveal load cost. Journal of Psychological Science, 42( 1), 43-49.
[ 李馨, 王雯, 梁菲菲, 杨宇, 连坤予, 张明哲, 白学军 . ( 2019). 汉语发展性阅读障碍儿童的快速命名缺陷:副中央凹预视效益小和负荷代价大之争. 心理科学, 42( 1), 43-49.]
[25] Li X. S., Liu P. P., & Rayner K . ( 2011). Eye movement guidance in Chinese reading: Is there a preferred viewing location? Vision Research, 51( 10), 1146-1156.
doi: 10.1016/j.visres.2011.03.004URL
[26] Li L. P., & Wu X. C . ( 2015). Effects of metalinguistic awareness on reading comprehension and the mediator role of reading fluency from grades 2 to 4. Plos One, 10( 3):e0114417.
[27] Liang F. F., Blythe H. I., Bai X. J., Yan G. L., Li X. S., Zang C. L., & Liversedge S. P . ( 2017). The role of character positional frequency on Chinese word learning during natural reading. Plos One, 12( 11), 1-24.
[28] Liang F. F., Blythe H. I., Zang C. L., Bai X. J., Yan G. L., & Liversedge S. P . ( 2015). Positional character frequency and word spacing facilitate the acquisition of novel words during Chinese children's reading. Journal of Cognitive Psychology, 27( 5), 594-608.
[29] Liang F. F., Wang Y. S., Zhang M. M., Yan G. L., & Bai X. J . ( 2016). The familiarity of morphemes modulating word spacing effects on the acquisition of novel Chinese vocabulary. Journal of Psychological Science, 39( 2), 258-264.
[ 梁菲菲, 王永胜, 张慢慢, 闫国利, 白学军 . ( 2016). 新词词素熟悉性影响视觉词切分线索在新词学习中的促进作用. 心理科学, 39( 2), 258-264.]
[30] Liang F. F., Zhang P., Zhang Q. H., Wang Y. S., & Bai X. J . ( 2017). Different performance of word learning capability between children and adults in natural reading: Evidence from eye movements. Journal of Psychological Science, 40( 4), 863-869.
[ 梁菲菲, 章鹏, 张琪涵, 王永胜, 白学军 . ( 2017). 自然阅读中儿童和成人新词学习能力的差异比较:基于眼动的证据. 心理科学, 40( 4), 863-869.]
[31] Lin C. D. & Zhang, H. C.. ,( 1986). The Chinese revision of WISC-R [in Chinese]. Beijing,China: Beijing Teachers College Press.
[ 林传鼎, 张厚粲 . (1986). 韦氏儿童智力量表中国修订本. 北京: 北京师范大学.]
[32] Ling W. S. & Bin, Z. S.. ,( 1988). Method of psychology test [in Chinese]. Beijing, China: Science Press.
[ 凌文辁, 滨治世 . (1988). 心理测验法. 北京: 科学出版社.]
[33] Liu Y. P., Guo S. Y., Yu L., & Reichle E. D . ( 2018). Word predictability affects saccade length in Chinese reading: An evaluation of the dynamic-adjustment model. Psychonomic Bulletin & Review, 25( 5), 1891-1899.
[34] Liu Y. P., Huang R., Li Y. G., & Gao D. G . ( 2017). The word frequency effect on saccade targeting during Chinese reading: Evidence from a survival analysis of saccade length. Frontiers in Psychology, 8, 116.
[35] Liu Y. P., Reichle E. D., & Li X. S . ( 2015). Parafoveal processing affects outgoing saccade length during the reading of Chinese. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41( 4), 1229-1236.
[36] Liu Y. P., Reichle E. D., & Li X. S . ( 2016). The effect of word frequency and parafoveal preview on saccade length during the reading of Chinese. Journal of Experimental Psychology: Human Perception and Performance, 42( 7), 1008-1025.
[37] Liu Y. P., Yu L., & Reichle E. D . ( 2019). The dynamic adjustment of saccades during Chinese reading: Evidence from eye movements and simulations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45( 3), 535-543.
doi: 10.1037/xlm0000595URL
[38] Lowell R., & Morris R. K . ( 2014). Word length effects on novel words: Evidence from eye movements. Attention Perception & Psychophysics, 76( 1), 179-189.
[39] Ma G. J., & Li X. S . ( 2015). How character complexity modulates eye movement control in Chinese reading. Reading and Writing, 28( 6), 747-761.
[40] Meng X. Z., Cheng-Lai A., Zeng B., Stein J. F., & Zhou X. L . ( 2011). Dynamic visual perception and reading development in Chinese school children. Annals of Dyslexia, 61( 2), 161-176.
[41] Nagy W., & Scott J. A . ( 2000). Vocabulary processes. In M. L. Kamil, P. Mosenthal, P. D. Pearson, & R. Bar (Eds.), Handbook of reading research (Vol.3, pp. 269-284). Mahwah, NJ: Erlbaum.
[42] Pan J., Yan M., Laubrock J., Shu H., & Kliegl R . ( 2014). Saccade-target selection of dyslexic children when reading Chinese. Vision Research, 97, 24-30.
[43] Paterson K. B., Almabruk A. A. A., McGowan V. A., White S. J., & Jordan T. R . ( 2015). Effects of word length on eye movement control: The evidence from Arabic. Psychonomic Bulletin & Review, 22( 5), 1443-1450.
[44] Paterson K. B., & Jordan T. R . ( 2010). Effects of increased letter spacing on word identification and eye guidance during reading. Memory & Cognition, 38( 4), 502-512.
[45] Perea M. & Acha J. , ( 2009). Space information is important for reading. Vision Research, 49( 15), 1994-2000.
[46] Pollatsek A., Tan L. H., & Rayner K . ( 2000). The role of phonological codes in integrating information across saccadic eye movements in Chinese character identification. Journal of Experimental Psychology: Human Perception and Performance, 26( 2), 607-633.
[47] R Core Team ( 2014). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.
[48] Rayner K. , ( 2009). Eye movements and attention in reading, scene perception, and visual search. The Quarterly Journal of Experimental Psychology, 62( 8), 1457-1506.
[49] Rayner K., Ashby J., Pollatsek A., & Reichle E. D . ( 2004). The effects of frequency and predictability on eye fixations in reading: Implications for the E-Z Reader model. Journal of Experimental Psychology: Human Perception and Performance, 30( 4), 720-730.
[50] Rayner K., Binder K. S., Ashby J., & Pollatsek A . ( 2001). Eye movement control in reading: Word predictability has little influence on initial landing positions in words. Vision Research, 41( 7), 943-954.
[51] Rayner K., Fischer M. H., & Pollatsek A . ( 1998). Unspaced text interferes with both word identification and eye movement control. Vision Research, 38( 8), 1129-1144.
[52] Reichle E. D., Liversedge S. P., Drieghe D., Blythe H. I., Joseph H. S. S. L., White S. J., & Rayner K . ( 2013). Using E-Z reader to examine the concurrent development of eye-movement control and reading skill. Developmental Review, 33( 2), 110-149.
[53] Reichle E. D., Pollatsek A., & Rayner K . ( 2006). E-Z reader: A cognitive-control, serial-attention model of eye-movement behavior during reading. Cognitive Systems Research, 7( 1), 4-22.
[54] Sheridan H., Rayner K., & Reingold E. M . ( 2013). Unsegmented text delays word identification: Evidence from a survival analysis of fixation durations. Visual Cognition, 21( 1), 38-60.
[55] Shu H., McBride-Chang C., Wu S., & Liu H. Y . ( 2006). Understanding Chinese developmental dyslexia: Morphological awareness as a core cognitive construct. Journal of Educational Psychology, 98( 1), 122-133.
[56] Shu H., Meng X. Z., Chen X., Luan H., & Cao F . ( 2005). The subtypes of developmental dyslexia in Chinese: Evidence from three cases. Dyslexia, 11( 4), 311-329.
[57] Wang X. C . ( 2010). The cognitive process foundation of the Chinese developmental dyslexia with phonological and orthographic deficit (Unpublished doctorial dissertation). East China Normal University.
[ 王晓辰 . ( 2010). 汉语发展性阅读障碍语音及正字法缺损的认知过程基础 (博士学位论文). 华东师范大学.]
[58] Wang X. L. & Tao, B. P.. ,( 1996). Chinese character recognition test battery and assessment scale for primary school children. Shanghai, China: Shanghai Education Press.
[ 王孝玲, 陶保平 . (1996). 小学生识字量测试题库及评价量表. 上海: 上海教育出版社.]
[59] Wang Y. S., Chen M. J., Zhao B. J., Li X., & Bai Y. G . ( 2017). The parafoveal processing of character n+1 and character n+2 serially influence the target selection during Chinese reading. Studies of Psychology and Behavior, 15( 6), 756-765.
[ 王永胜, 陈茗静, 赵冰洁, 李馨, 白宇鸽 . ( 2017). 副中央凹中字n+1与字n+2在眼跳目标选择中的作用. 心理与行为研究, 15( 6), 756-765.]
[60] Wei W., Li X. S., & Pollatsek A . ( 2013). Word properties of a fixated region affect outgoing saccade length in Chinese reading. Vision Research, 80, 1-6.
[61] Weighall A. R., Henderson L. M., Barr D. J., Cairney S. A., & Gaskell M. G . ( 2017). Eye-tracking the time-course of novel word learning and lexical competition in adults and children. Brain and Language, 167, 13-27.
[62] Xiong J. P . ( 2014). The oculormotor characters of Chinese developmental dyslexia (Unpublished doctorial dissertation). Tianjin Normal University.
[ 熊建萍 . ( 2014). 汉语发展性阅读障碍儿童的眼动研究 (博士学位论文). 天津师范大学.]
[63] Yan M. & Kliegl R. , ( 2016). CarPrice versus CarpRice: Word boundary ambiguity influences saccade target selection during the reading of Chinese sentences. Journal of Experimental Psychology: Learning, Memory and Cognition, 42( 11), 1832-1838.
[64] Yan M., Kliegl R., Richter E. M., Nuthmann A., & Shu H . ( 2010). Flexible saccade-target selection in Chinese reading. The Quarterly Journal of Experimental Psychology, 63( 4), 705-725.
[65] Yan M., Kliegl R., Shu H., Pan J., & Zhou X. L . ( 2010). Parafoveal load of word n+1 modulates preprocessing effectiveness of word n+2 in Chinese reading.[J] ournal of Experimental Psychology: Human Perception and Performance, 36( 6), 1669-1676.
[66] Yan M., Pan J., Laubrock J., Kliegl R., & Shu H . ( 2013). Parafoveal processing efficiency in rapid automatized naming: A comparison between Chinese normal and dyslexic children. Journal of Experimental Child Psychology, 115( 3), 579-589.
[67] Yan M., Richter E. M., Shu H., & Kliegl R . ( 2009). Readers of Chinese extract semantic information from parafoveal words. Psychonomic Bulletin and Review, 16( 3), 561-566.
[68] Yan M., Zhou W., Shu H., Yusupu R., Miao D., Krügel A., & Kliegl R . ( 2014). Eye movements guided by morphological structure: Evidence from the Uighur language. Cognition, 132( 2), 181-215.
[69] Zang C. L., Liang F. F., Bai X. J., Yan G. L., & Liversedge S. P . ( 2013). Interword spacing and landing position effects during Chinese reading in children and adults.[J] ournal of Experimental Psychology: Human Perception and Performance, 39( 3), 720-734.
[70] Zhang M. L., Xie W. Y., Xu Y. Z., & Meng X. Z . ( 2018). Auditory temporal perceptual learning and transfer in Chinese-speaking children with developmental dyslexia. Research in Developmental Disabilities, 74, 146-159.
[71] Zou Y. C . ( 2003). Information processing of developmental dyslexia in Chinese children (Unpublished doctorial dissertation). South China Normal University.
[ 邹艳春 . ( 2003). 汉语学生发展性阅读障碍的信息加工特点研究 (博士学位论文). 华南师范大学.]




[1]李杰, 杨悦, 赵婧. 汉语发展性阅读障碍儿童视觉同时性加工技能子成分的发展及其与阅读的关系[J]. 心理学报, 2021, 53(8): 821-836.
[2]刘志方, 仝文, 张智君, 赵亚军. 语境预测性对阅读中字词加工过程的影响:眼动证据[J]. 心理学报, 2020, 52(9): 1031-1047.
[3]杨帆, 隋雪, 李雨桐. 中文阅读中长距离回视引导机制的眼动研究[J]. 心理学报, 2020, 52(8): 921-932.
[4]张慢慢, 臧传丽, 徐宇峰, 白学军, 闫国利. 快速与慢速读者的中央凹加工对副中央凹预视的影响[J]. 心理学报, 2020, 52(8): 933-945.
[5]白学军, 马杰, 李馨, 连坤予, 谭珂, 杨宇, 梁菲菲. 发展性阅读障碍儿童的新词习得及其改善[J]. 心理学报, 2019, 51(4): 471-483.
[6]刘璐, 闫国利. 聋人阅读中的副中央凹视觉注意增强效应——来自消失文本的证据[J]. 心理学报, 2018, 50(7): 715-726.
[7]刘志方, 张智君, 潘运, 仝文, 苏衡. 中文阅读中预视阶段和注视阶段内词汇视觉编码 的过程特点:来自消失文本的证据[J]. 心理学报, 2017, 49(7): 853-865.
[8]刘志方;张智君;杨桂芳. 中文阅读中的字词激活模式:来自提示词边界延时效应的证据[J]. 心理学报, 2016, 48(9): 1082-1092.
[9]苏衡;刘志方;曹立人. 中文阅读预视加工中的词频和预测性效应及其对词切分的启示:基于眼动的证据[J]. 心理学报, 2016, 48(6): 625-636.
[10]闫国利;刘妮娜;梁菲菲;刘志方;白学军. 中文读者词汇视觉信息获取速度的发展 ——来自消失文本的证据[J]. 心理学报, 2015, 47(3): 300-318.
[11]林欧;王正科;孟祥芝. 汉语发展性阅读障碍儿童的视知觉学习[J]. 心理学报, 2013, 45(7): 762-772.
[12]刘志方;闫国利;张智君;潘运;杨桂芳. 中文阅读中的预视效应与词切分[J]. 心理学报, 2013, 45(6): 614-625.
[13]何先友,林崇德. 中文阅读中的边界效应及其消除:事件持续效应[J]. 心理学报, 2008, 40(06): 654-661.
[14]刘文理,刘翔平,张婧乔. 汉语发展性阅读障碍亚类型的初步探讨[J]. 心理学报, 2006, 38(05): 681-693.
[15]孟祥芝,周晓林,曾飚,赛晓光. 发展性阅读障碍与知觉加工[J]. 心理学报, 2002, 34(04): 107-112.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4475
相关话题/阅读 心理 材料 指标 汉语