删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中央凹加工负荷与副中央凹信息在汉语阅读眼跳目标选择中的作用

本站小编 Free考研考试/2022-01-01

王永胜, 赵冰洁, 陈茗静, 李馨, 闫国利, 白学军()
教育部人文社会科学重点研究基地, 天津 300074
收稿日期:2017-08-30出版日期:2018-11-30发布日期:2018-10-30


基金资助:* 天津市哲学社会科学项目资助(TJJX17-011)

Influence of the frequency of fixated words and the number of strokes of parafoveal words on saccadic target selection in Chinese reading

WANG Yongsheng, ZHAO Bingjie, CHEN Mingjing, LI Xin;, YAN Guoli, BAI Xuejun()
Academy of Psychology and Behaviour, Tianjin Normal University,Key Research Base of Humanities and Social Sciences of Ministry of Education, Tianjin 300074, China
Received:2017-08-30Online:2018-11-30Published:2018-10-30







摘要/Abstract


摘要: 研究探讨汉语读者选择眼跳目标时, 中央凹注视词的加工负荷是否影响副中央凹获取信息量, 进而调节随后的眼跳长度。采用眼动追踪技术, 操纵了中央凹注视词的词频(高频、低频)和副中央凹词的笔画数(多笔画、少笔画)。结果发现:从中央凹词到副中央凹少笔画词的眼跳长度显著地长于到多笔画词的, 且这种笔画数效应并不受中央凹加工负荷的调节; 从高频中央凹词到副中央凹词的眼跳长度显著地长于低频词的。在本实验条件下结果提示:中央凹加工负荷在眼跳目标选择中的作用不是通过调节副中央凹获取信息量的多少来实现的。


表1实验材料
目标词 实验操纵 词频 首字笔画数 尾字笔画数 首字字频 尾字字频
中央凹词 高频 405.08 (458.04) 7.76 (2.71) 7.47 (2.69) 2208.96 (3995.05) 2866.28 (3561.96)
低频 7.64 (7.19) 8.21 (3.16) 7.29 (2.76) 835.42 (2263.10) 1203.60 (1772.83)
副中央凹词 多笔画数词 21.05 (46.99) 13.38 (1.57) 13.59 (1.77) 380.16 (991.66) 1256.01 (144.07)
少笔画数词 21.23 (46.06) 5.24 (1.16) 5.45 (1.67) 780.85 (2233.47) 1226.78 (140.72)

表1实验材料
目标词 实验操纵 词频 首字笔画数 尾字笔画数 首字字频 尾字字频
中央凹词 高频 405.08 (458.04) 7.76 (2.71) 7.47 (2.69) 2208.96 (3995.05) 2866.28 (3561.96)
低频 7.64 (7.19) 8.21 (3.16) 7.29 (2.76) 835.42 (2263.10) 1203.60 (1772.83)
副中央凹词 多笔画数词 21.05 (46.99) 13.38 (1.57) 13.59 (1.77) 380.16 (991.66) 1256.01 (144.07)
少笔画数词 21.23 (46.06) 5.24 (1.16) 5.45 (1.67) 780.85 (2233.47) 1226.78 (140.72)


表2实验材料举例
中央凹
注视词
副中央
凹词
句子
高频 多笔画 摄影师总是能记录温馨生活中最动情的瞬间
少笔画 摄影师总是能记录平凡生活中最动情的瞬间
低频 多笔画 摄影师总是能发觉温馨生活中最动情的瞬间
少笔画 摄影师总是能发觉平凡生活中最动情的瞬间

表2实验材料举例
中央凹
注视词
副中央
凹词
句子
高频 多笔画 摄影师总是能记录温馨生活中最动情的瞬间
少笔画 摄影师总是能记录平凡生活中最动情的瞬间
低频 多笔画 摄影师总是能发觉温馨生活中最动情的瞬间
少笔画 摄影师总是能发觉平凡生活中最动情的瞬间


表3副中央凹词的眼跳目标和注视位置分析
分析指标 中央凹注视词高频 中央凹注视词低频
副中央凹词多笔画 副中央凹词少笔画 副中央凹词多笔画 副中央凹词少笔画
起跳位置 0.91 (0.55) 0.91 (0.53) 0.90 (0.54) 0.88 (0.52)
中央凹词到副中央凹词眼跳长度 1.93 (0.53) 2.00 (0.50) 1.89 (0.51) 1.90 (0.55)
中央凹词向前眼跳长度 2.03 (0.61) 2.18 (0.67) 1.98 (0.60) 2.10 (0.75)
平均首次注视位置 0.95 (0.50) 1.02 (0.53) 0.94 (0.51) 0.95 (0.55)
单次注视位置 1.04 (0.45) 1.09 (0.49) 1.02 (0.48) 1.06 (0.50)
多次注视中的首次注视位置 0.63 (0.52) 0.68 (0.55) 0.63 (0.49) 0.54 (0.50)

表3副中央凹词的眼跳目标和注视位置分析
分析指标 中央凹注视词高频 中央凹注视词低频
副中央凹词多笔画 副中央凹词少笔画 副中央凹词多笔画 副中央凹词少笔画
起跳位置 0.91 (0.55) 0.91 (0.53) 0.90 (0.54) 0.88 (0.52)
中央凹词到副中央凹词眼跳长度 1.93 (0.53) 2.00 (0.50) 1.89 (0.51) 1.90 (0.55)
中央凹词向前眼跳长度 2.03 (0.61) 2.18 (0.67) 1.98 (0.60) 2.10 (0.75)
平均首次注视位置 0.95 (0.50) 1.02 (0.53) 0.94 (0.51) 0.95 (0.55)
单次注视位置 1.04 (0.45) 1.09 (0.49) 1.02 (0.48) 1.06 (0.50)
多次注视中的首次注视位置 0.63 (0.52) 0.68 (0.55) 0.63 (0.49) 0.54 (0.50)


表4注视词频、副中央凹词笔画数在眼跳目标选择分析指标上的固定效应估计值
分析指标 截距 词频 笔画数 交互作用
起跳位置 0.907*** -0.018 -0.007 -0.018
中央凹词到副中央凹词眼跳长度 0.650*** -0.037** 0.029* -0.026
中央凹词向前眼跳长度 0.701*** -0.034* 0.055** -0.023
平均首次注视位置 0.991*** -0.035 0.046§ -0.042
单次注视位置 1.064*** -0.014 0.051§ -0.008
多次注视中的首次注视位置 0.677*** -0.078§ -0.044 -0.108

表4注视词频、副中央凹词笔画数在眼跳目标选择分析指标上的固定效应估计值
分析指标 截距 词频 笔画数 交互作用
起跳位置 0.907*** -0.018 -0.007 -0.018
中央凹词到副中央凹词眼跳长度 0.650*** -0.037** 0.029* -0.026
中央凹词向前眼跳长度 0.701*** -0.034* 0.055** -0.023
平均首次注视位置 0.991*** -0.035 0.046§ -0.042
单次注视位置 1.064*** -0.014 0.051§ -0.008
多次注视中的首次注视位置 0.677*** -0.078§ -0.044 -0.108


表5中央凹词与副中央凹词的注视结果
目标词 分析指标 中央凹注视词高频 中央凹注视词低频
副中央凹词多笔画 副中央凹词少笔画 副中央凹词多笔画 副中央凹词少笔画
中央凹词注视时间 首次注视时间 229 (73) 239 (81) 246 (83) 249 (82)
凝视时间 268 (119) 268 (120) 291 (132) 306 (146)
单一注视时间 228 (72) 236 (79) 244 (82) 249 (83)
总注视时间 383 (227) 401 (237) 449 (266) 464 (275)
跳读率 0.08 (0.26) 0.09 (0.27) 0.08 (0.27) 0.08 (0.27)
副中央凹词注视时间 首次注视时间 252 (85) 251 (89) 261 (88) 251 (84)
凝视时间 305 (136) 295 (135) 311 (136) 300 (134)
单一注视时间 256 (86) 251 (89) 264 (88) 251 (84)
总注视时间 462 (287) 431 (270) 486 (278) 456 (276)
跳读率 0.05 (0.21) 0.08 (0.26) 0.05 (0.21) 0.09 (0.28)

表5中央凹词与副中央凹词的注视结果
目标词 分析指标 中央凹注视词高频 中央凹注视词低频
副中央凹词多笔画 副中央凹词少笔画 副中央凹词多笔画 副中央凹词少笔画
中央凹词注视时间 首次注视时间 229 (73) 239 (81) 246 (83) 249 (82)
凝视时间 268 (119) 268 (120) 291 (132) 306 (146)
单一注视时间 228 (72) 236 (79) 244 (82) 249 (83)
总注视时间 383 (227) 401 (237) 449 (266) 464 (275)
跳读率 0.08 (0.26) 0.09 (0.27) 0.08 (0.27) 0.08 (0.27)
副中央凹词注视时间 首次注视时间 252 (85) 251 (89) 261 (88) 251 (84)
凝视时间 305 (136) 295 (135) 311 (136) 300 (134)
单一注视时间 256 (86) 251 (89) 264 (88) 251 (84)
总注视时间 462 (287) 431 (270) 486 (278) 456 (276)
跳读率 0.05 (0.21) 0.08 (0.26) 0.05 (0.21) 0.09 (0.28)


表6注视词频、副中央凹词笔画数在注视时间指标上的固定效应估计值
目标词 分析指标 截距 词频 笔画数 交互作用
中央凹词分析 首次注视时间 5.431*** 0.053*** 0.024* -0.02
凝视时间 5.547*** 0.095*** 0.023 0.038
单一注视时间 5.429*** 0.052*** 0.025§ -0.008
总注视时间 5.879*** 0.139*** 0.038§ -0.012
跳读率 -2.842*** 0.059 0.135 -0.143
副中央凹词分析 首次注视时间 5.486*** 0.018 -0.027§ -0.021
凝视时间 5.615*** 0.022 -0.047* 0.001
单一注视时间 5.491*** 0.019 -0.039* -0.022
总注视时间 5.960*** 0.066** -0.077** -0.007
跳读率 -3.128*** 0.132 0.610*** 0.184

表6注视词频、副中央凹词笔画数在注视时间指标上的固定效应估计值
目标词 分析指标 截距 词频 笔画数 交互作用
中央凹词分析 首次注视时间 5.431*** 0.053*** 0.024* -0.02
凝视时间 5.547*** 0.095*** 0.023 0.038
单一注视时间 5.429*** 0.052*** 0.025§ -0.008
总注视时间 5.879*** 0.139*** 0.038§ -0.012
跳读率 -2.842*** 0.059 0.135 -0.143
副中央凹词分析 首次注视时间 5.486*** 0.018 -0.027§ -0.021
凝视时间 5.615*** 0.022 -0.047* 0.001
单一注视时间 5.491*** 0.019 -0.039* -0.022
总注视时间 5.960*** 0.066** -0.077** -0.007
跳读率 -3.128*** 0.132 0.610*** 0.184







1 Baayen R. H., Davidson D. J., & Bates D. M . ( 2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59( 4), 390-412.
2 Bai X. J., Yan G. L., Liversedge S. P., Zang C. L., & Rayner K . ( 2008). Reading spaced and unspaced Chinese text: Evidence from eye movements. Journal of Experimental Psychology: Human Perception and Performance, 34( 5), 1277-1287.
doi: 10.1037/0096-1523.34.5.1277URLpmid: 18823210
3 Bates D., M?echler M., & Bolker B . ( 2012). lme4: Linear mixed-effects models using S4 classes. R package version 0. 999375-42.
4 Cui L., Wang S. P., Yan G. L., & Bai X. J . ( 2010). Parafoveal-on-foveal interactions in normal Chinese reading. Acta Psychologica Sinica, 42( 5), 547-558.
doi: 10.3724/SP.J.1041.2010.00547URL
5 [ 崔磊, 王穗苹, 闫国利, 白学军 . ( 2010). 中文阅读中副中央凹与中央凹相互影响的眼动实验. 心理学报, 42( 5), 547-558.]
6 Henderson J. M., &Ferreira F . ( 1990). Effects of foveal processing difficulty on the perceptual span in reading: Implications for attention and eye movement control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16( 3), 417-429.
doi: 10.1037/0278-7393.16.3.417URLpmid: 2140401
7 Hoosain R. , ( 1992). Psychological reality of the word in Chinese. In H. C. Chen & O. J. L.Tzeng (Eds.), Language processing in Chinese (pp. 111-130). Elsevier.
8 Juhasz B. J., Inhoff A. W., & Rayner K . ( 2005). The role of interword spaces in the processing of English compound words. Language and Cognitive Processes, 20( 1-2), 291-316.
doi: 10.1080/01690960444000133URL
9 Kliegl R., Grabner E., Rolfs M., & Engbert R . ( 2004). Length, frequency, and predictability effects of words on eye movements in reading. European Journal of Cognitive Psychology, 16( 1-2), 262-284.
doi: 10.1080/09541440340000213URL
10 Li X. S., Bicknell K., Liu P. P., Wei W., & Rayner K . ( 2014). Reading is fundamentally similar across disparate writing systems: A systematic characterization of how words and characters influence eye movements in Chinese reading. Journal of Experimental Psychology: General, 143( 2), 895-913.
doi: 10.1037/a0033580URLpmid: 23834023
11 Li X. S., Liu P. P., & Rayner K . ( 2011). Eye movement guidance in Chinese reading: Is there a preferred viewing location?. Vision Research, 51( 10), 1146-1156.
doi: 10.1016/j.visres.2011.03.004URLpmid: 21402094
12 Li Y. G., Huang R., Hua H. M., & Li X. S . ( 2017). How do reader select the saccade targets? Advances in Psychological Science, 25( 3), 404-412.
doi: 10.3724/SP.J.1042.2017.00404URL
13 [ 李玉刚, 黄忍, 滑慧敏, 李兴珊 . ( 2017). 阅读中的眼跳目标选择问题. 心理科学进展, 25( 3), 404-412.]
doi: 10.3724/SP.J.1042.2017.00404URL
14 Liu P., P. ( 2013). Eye movement control during Chinese reading: How to select the saccade target (Unpublished doctorial dissertation). University of Chinese Academy of Science.
15 [ 刘萍萍 . ( 2013). 汉语阅读时的眼动控制: 眼跳目标的选择(博士学位论文). 中国科学院大学.]
16 Liu P.P., & Li, X. S . ( 2014). Inserting spaces before and after words affects word processing differently in Chinese: Evidence from eye movements. British Journal of Psychology, 105( 1), 57-68.
doi: 10.1111/bjop.12013URLpmid: 24387096
17 Liu Y. P., Guo S. Y., Yu L., & Reichle E. D . ( 2018). Word predictability affects saccade length in Chinese reading: An evaluation of the dynamic-adjustment model. Psychonomic Bulletin & Review, 21( 5), 1891-1899.
doi: 10.3758/s13423-017-1357-xURLpmid: 28762028
18 Liu Y. P., Huang R., Gao D. G., & Reichle E. D . ( 2017). Further tests of a dynamic-adjustment account of saccade targeting during the reading of Chinese. Cognitive Science, 41( S6), 1264-1287.
doi: 10.1111/cogs.12487URLpmid: 28295571
19 Liu Y. P., Reichle E. D., & Li X. S . ( 2015). Parafoveal processing affects outgoing saccade length during the reading of Chinese. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41( 4), 1229-1236.
doi: 10.1037/xlm0000057URLpmid: 4345150
20 Liu Y. P., Reichle E. D., & Li X. S . ( 2016). The effect of word frequency and parafoveal preview on saccade length during the reading of Chinese. Journal of Experimental Psychology: Human Perception and Performance, 42( 7), 1008-1025.
doi: 10.1037/xhp0000190URLpmid: 4925191
21 Liversedge S. P., Gilchrist I. D. & Everling, S. (Eds.) ,.( 2011) . The Oxford handbook of eye movements. US: Oxford University Press.
22 , Ma G.J., & Li X.S, . ( 2015). How character complexity modulates eye movement control in Chinese reading. Reading and Writing, 28( 6), 747-761.
doi: 10.1007/s11145-015-9548-1URL
23 Ma, G. J, Li, X. S., & Pollatsek , A. ( 2015). There is no relationship between preferred viewing location and word segmentation in Chinese reading. Visual Cognition, 23( 3), 399-414.
doi: 10.1080/13506285.2014.1002554URL
24 McConkie G. W., Kerr P. W., Reddix M. D., & Zola D . ( 1988). Eye movement control during reading: I. The location of initial eye fixations on words. Vision research, 28( 10), 1107-1118.
doi: 10.1016/0042-6989(88)90137-XURLpmid: 3257013
25 Meng H. X., Bai X. J., Yan G. L., & Yao H. J . ( 2014). The Number of Strokes Influences Initial Landing Positions during Chinese Reading. Journal of Psychological Science, 37( 4), 809-815.
26 [ 孟红霞, 白学军, 闫国利, 姚海娟 . ( 2014). 汉字笔画数对注视位置效应的影响. 心理科学, 37(4), 809-815.]
27 Morris R. K., Rayner K., & Pollatsek A . ( 1990). Eye movement guidance in reading: The role of parafoveal letter and space information. Journal of Experimental Psychology. Human Perception and Performance, 16( 2), 268-281.
doi: 10.1037//0096-1523.16.2.268URLpmid: 2142198
28 O’Regan J.K., (1992). Optimal viewing position in words and the strategy-tactics theory of eye movements in reading. In: Rayner K. (eds) Eye movements and visual cognition. Springer Series in Neuropsychology (pp. 333-354). Springer New York.
29 O'Regan J.K., & Jacobs A.M, . ( 1992). Optimal viewing position effect in world recognition: A challenge to current theory. Journal of Experimental Psychology: Human Perception and Performance, 18( 1), 185-197.
doi: 10.1037/0096-1523.18.1.185URL
30 Peng J-Y, &Chen J-Y. , ( 2004). Even words are right, odd ones are odd: Explaining word segmentation inconsistency among Chinese readers. Chinese Journal of Psychology, 46( 1), 49-55.
31 [ 彭瑞元, 陈振宇 . ( 2004). “偶语易安, 奇字难适”: 探讨中文读者断词不一致之原因. 中华心理学刊, 46( 1), 49-55.]
32 Perea M, & Acha J , ( 2009). Space information is important for reading. Vision Research, 49( 15), 1994-2000.
doi: 10.1016/j.visres.2009.05.009URLpmid: 19463847
33 Pollatsek A, & Rayner K . (1982). Eye movement control in reading: The role of word boundaries. Journal of Experimental Psychology: Human Perception and Performance, 8( 6), 817-833.
doi: 10.1037/0096-1523.8.6.817URL
34 R Development Core Team ( 2014). R: A language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing. URL: 2014). R: A language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing. URL:
35 Rayner K ( 1979). Eye guidance in reading: Fixation locations within words. Perception, 8( 1), 21-30.
36 Rayner K ( 1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124( 3), 372-422.
37 Rayner K ( 2009). Eye movements and attention in reading, scene perception, and visual search. The Quarterly Journal of Experimental Psychology, 62( 8), 1457-1506.
doi: 10.1080/17470210902816461URLpmid: 19449261
38 Rayner K., Ashby J., Pollatsek A., & Reichle E. D . ( 2004). The effects of frequency and predictability on eye fixations in reading: Implicationsfor the E-Z Reader model. Journal of Experimental Psychology: Human Perception and Performance, 30( 4), 720-732.
doi: 10.1037/0096-1523.30.4.720URLpmid: 15301620
39 Rayner K, & Raney, G. E . ( 1996). Eye movement control in reading and visual search: Effects of word frequency. Psychonomic Bulletin & Review, 3(2), 245-248
40 Reichle E. D., Rayner K., & Pollatsek A . ( 2012). Eye movements in reading versus nonreading tasks: Using E-Z Reader to understand the role of word/stimulus familiarity. Visual Cognition, 20( 4-5), 360-390.
doi: 10.1080/13506285.2012.667006URLpmid: 3374660
41 Schad D.J., & Engbert R. , (2012). The zoom lens of attention: Simulating shuffled versus normal text reading using the SWIFT model. Visual Cognition, 20( 4-5), 391-421.
doi: 10.1080/13506285.2012.670143URLpmid: 3379738
42 Vitu F., O’regan J. K., & Mittau M . ( 1990). Optimal landing position in reading isolated words and continuous text. Attention, Perception, & Psychophysics, 47( 6), 583-600.
doi: 10.3758/BF03203111URLpmid: 2367179
43 Wang Y.S . ( 2016). The parafoveal processing influence selection of target during Chinese reading (Unpublished doctorial dissertation). Tianjin Normal University, China.
44 [ 王永胜 . ( 2016). 汉语阅读中副中央凹加工在眼跳目标选择中的作用 (博士学位论文). 天津师范大学.]
45 Wei W., Li X. S., & Pollatsek A . ( 2013, March). Word properties of a fixated region affect outgoing saccade length in Chinese reading. Vision Research, 80, 1-6.
doi: 10.1016/j.visres.2012.11.015URLpmid: 23231957
46 Yan G. L., Xiong J. P., Zang C. L., Xu L. L., Cui L., & Bai X. J . ( 2013). Review of eye-movement measures in reading research. Advances in Psychological Science, 21( 4), 589-605.
doi: 10.3724/SP.J.1042.2013.00589URL
47 [ 闫国利, 熊建萍, 臧传丽, 余莉莉, 崔磊, 白学军 . ( 2013). 阅读研究中的主要眼动指标评述. 心理科学进展, 21( 4), 589-605.]
48 Yan G. L., Tian H. G., Bai X. J., & Rayner K . ( 2006). The effect of word and character frequency on the eye movements of Chinese readers. British Journal of Psychology, 97( 2), 259-268.
doi: 10.1348/000712605X70066URLpmid: 16613652
49 Yan G. L., Zhang Q. M., Zhang L. L., & Bai X. J . ( 2013). The effect of masking materials on percetptual span in chinese reading. Journal of Psychological Science. 36( 6), 1317-1322.
50 [ 闫国利, 张巧明, 张兰兰, 白学军 . ( 2013). 不同掩蔽材料对阅读知觉广度的影响. 心理科学, 36( 6), 1317-1322.]
51 Yan M., ( 2015). Visually complex foveal words increase the amount of parafoveal information acquired. Vision Research, 111, 91-96.
doi: 10.1016/j.visres.2015.03.025URLpmid: 25911574
52 Yan M., Kliegl R., Richter E. M., Nuthmann A., & Shu H . ( 2010). Flexible saccade-target selection in Chinese reading. The Quarterly Journal of Experimental Psychology, 63( 4), 705-725.
doi: 10.1080/17470210903114858URLpmid: 19742387
53 Yan M., Kliegl R., Shu H., Pan J., & Zhou X. L . ( 2010). Parafoveal load of word N+ 1 modulates preprocessing effectiveness of word N+ 2 in Chinese reading. Journal of Experimental Psychology: Human Perception and Performance, 36( 6), 1669-1676.
doi: 10.1037/a0019329URLpmid: 20731511
54 Yan M., Richter E. M., Shu H., & Kliegl R . ( 2009). Readers of Chinese extract semantic information from parafoveal words. Psychonomic Bulletin & Review, 16( 3), 561-566.
doi: 10.3758/PBR.16.3.561URLpmid: 19451385
55 Zang C. L., Liang F. F., Bai X. J., Yan G. L., & Liversedge S. P . ( 2013). Interword spacing and landing position effects during Chinese reading in children and adults. Journal of Experimental Psychology: Human Perception and Performance, 39( 3), 720-734.
doi: 10.1037/a0030097URLpmid: 23067120
56 Zhang M.M . ( 2015). The mechanism of word skipping in Chinese reading: An eye movement study (Unpublished doctorial dissertation). Tianjin Normal University, China.
57 [ 张慢慢 . ( 2015). 中文阅读中词跳读机制的眼动研究(博士学位论文).天津师范大学.]




[1]张慢慢, 臧传丽, 徐宇峰, 白学军, 闫国利. 快速与慢速读者的中央凹加工对副中央凹预视的影响[J]. 心理学报, 2020, 52(8): 933-945.
[2]白学军;王永胜;郭志英;高晓雷;闫国利. 汉语阅读中词N+2的预视对高频词N+1 加工影响的眼动研究[J]. 心理学报, 2015, 47(2): 143-156.
[3]任桂琴,韩玉昌,于泽. 句子语境中汉语词汇形、音作用的眼动研究[J]. 心理学报, 2012, 44(4): 427-434.
[4]张智君,刘志方,赵亚军,季靖. 汉语阅读过程中词切分的位置:一项基于眼动随动显示技术的研究[J]. 心理学报, 2012, 44(1): 51-62.
[5]刘志方,张智君,赵亚军. 汉语阅读中眼跳目标选择单元以及词汇加工方式:来自消失文本的实验证据[J]. 心理学报, 2011, 43(06): 608-618.
[6]丁锦红,王丽燕. 语音回路与阅读理解关系的眼动研究[J]. 心理学报, 2006, 38(05): 694-701.
[7]张亚旭, 周晓林, 舒华, 曹凡. 不同阅读能力儿童汉语形声字的词汇和亚词汇语音加工[J]. 心理学报, 2003, 35(增刊): 6-13.
[8]谢丹柯, 周晓林. 汉语词汇阅读中的语音与语义激活:一个重复实验研究[J]. 心理学报, 2003, 35(增刊): 14-22.
[9]武宁宁,舒华,周晓林,石东方. 移动窗口条件下语音、字形信息在汉语阅读中的作用[J]. 心理学报, 1998, 30(2): 154-160.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4320
相关话题/中央 指标 心理 阅读 实验