删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

音乐训练对4~5岁幼儿普通话声调范畴感知能力的影响

本站小编 Free考研考试/2022-01-01

姚尧1,2, 陈晓湘1()
1 湖南大学外国语学院, 长沙 410082
2 长沙理工大学外国语学院, 长沙 410114
收稿日期:2019-08-22出版日期:2020-04-25发布日期:2020-02-25
通讯作者:陈晓湘E-mail:sophycxx1963@126.com

基金资助:* 国家社科基金项目(14BYY144);湖南省社科基金一般项目(18YBA071);长沙理工大学青年教师成长计划(2019QJCZ092);教育部人文社科青年基金项目(20YJC740082)

The effects of music training on categorical perception of Mandarin tones in 4- to 5-year-old children

YAO Yao1,2, CHEN Xiaoxiang1()
1 School of Foreign Languages, Hunan University, Changsha 410082, China
2 School of Foreign Studies, Changsha University of Science and Technology, Changsha 410014, China
Received:2019-08-22Online:2020-04-25Published:2020-02-25
Contact:CHEN Xiaoxiang E-mail:sophycxx1963@126.com






摘要/Abstract


摘要: 已有研究表明, 音乐训练能提高成人对普通话声调范畴感知的能力, 此种训练能否增强幼儿对声调范畴感知的能力?训练效果是否受到训练时间长短的影响?本研究对幼儿园4~5岁幼儿进行音乐训练, 共40人, 分成音乐组和控制组, 每组各20人, 追踪考察音乐训练和训练时间长短对幼儿声调范畴感知能力提升的影响。实验采用前测-中测-后测设计, 对音乐组开展每周3次, 每次30分钟, 以小钟琴演奏为主的音乐训练; 控制组不进行任何有组织的训练活动。结果发现, 12个月音乐训练提升了幼儿对声调范畴感知的程度, 表现为音乐组幼儿范畴边界宽度显著小于控制组, 而训练6个月时, 该优势并不显著。此外, 12个月音乐训练还加强了幼儿区分范畴内刺激声学差异的敏感性, 而对范畴间刺激的区分能力无显著提高。本研究结果支持了音乐学习的歌剧理论(OPERA), 音乐训练具有跨域迁移作用, 可提升4~5岁幼儿对普通话声调范畴感知的能力, 但只有长期持续的训练才可能真正提高幼儿的音高精细化加工水平。


表1两组幼儿年龄及智力测试结果的均值和标准差
组别 年龄(月) 智力
音乐组 51 (2.91) 110.25 (4.48)
控制组 50.8 (3.0) 111.95 (3.95)

表1两组幼儿年龄及智力测试结果的均值和标准差
组别 年龄(月) 智力
音乐组 51 (2.91) 110.25 (4.48)
控制组 50.8 (3.0) 111.95 (3.95)



图1dá(二声)至dā(一声)的音高连续统示意图
图1dá(二声)至dā(一声)的音高连续统示意图



图2辨认实验选择示意图
图2辨认实验选择示意图



图3区分实验选择示意图
图3区分实验选择示意图


表24~5岁幼儿音乐训练课程表
阶段 课时 课程内容
第一阶段
听音
第1个月
(2次新课+4次陪练)
目的:认识小钟琴、听音乐并唱谱
重点:听音、唱谱
难点:准确唱谱
训练能力:感知音乐的高低、强弱及快慢
教具:小钟琴
第二阶段
辩音
第2~4个月
(9次新课+18次陪练)
目的:音高对比
重点:识别32个音, 感知不同的音高
难点:识别32个音, 并按照节拍击打教师指定的音
训练能力:重点感知不同音符的音高差异
教具:小钟琴、非洲鼓(伴奏)
第三阶段
演奏
第5~6个月
(8次新课+16次陪练)
目的:随音乐演奏简单曲目
重点:区分32个音, 在一组不同的音中, 准确击打教师指定的音
难点:唱谱并配合背景音乐演奏
训练能力:感知音的高低、长短、强弱, 并随背景音乐旋律和节拍一起演奏
教具:小钟琴
第四阶段
表演
第7~12个月
(18次新课+36次陪练)
目的:随音乐完整演奏较长曲目
重点:重复随乐演奏训练, 提升准确性、流畅性和完整性
难点:唱谱并配合背景音乐演奏
训练能力:感知音的高低、长短、强弱, 并随背景音乐节拍演奏, 在无演奏任务的过渡段, 用小金锤配合简单动作, 使表演更完整
教具:小钟琴

表24~5岁幼儿音乐训练课程表
阶段 课时 课程内容
第一阶段
听音
第1个月
(2次新课+4次陪练)
目的:认识小钟琴、听音乐并唱谱
重点:听音、唱谱
难点:准确唱谱
训练能力:感知音乐的高低、强弱及快慢
教具:小钟琴
第二阶段
辩音
第2~4个月
(9次新课+18次陪练)
目的:音高对比
重点:识别32个音, 感知不同的音高
难点:识别32个音, 并按照节拍击打教师指定的音
训练能力:重点感知不同音符的音高差异
教具:小钟琴、非洲鼓(伴奏)
第三阶段
演奏
第5~6个月
(8次新课+16次陪练)
目的:随音乐演奏简单曲目
重点:区分32个音, 在一组不同的音中, 准确击打教师指定的音
难点:唱谱并配合背景音乐演奏
训练能力:感知音的高低、长短、强弱, 并随背景音乐旋律和节拍一起演奏
教具:小钟琴
第四阶段
表演
第7~12个月
(18次新课+36次陪练)
目的:随音乐完整演奏较长曲目
重点:重复随乐演奏训练, 提升准确性、流畅性和完整性
难点:唱谱并配合背景音乐演奏
训练能力:感知音的高低、长短、强弱, 并随背景音乐节拍演奏, 在无演奏任务的过渡段, 用小金锤配合简单动作, 使表演更完整
教具:小钟琴


表3音乐组训练成绩的平均值和标准差
测试项目 训练6个月 训练12个月
小钟琴演奏 25.15 (1.95) 27.75 (1.83)
音阶模唱 23.45 (1.64) 27.80 (1.50)
总分 48.60 (2.23) 55.56 (2.43)

表3音乐组训练成绩的平均值和标准差
测试项目 训练6个月 训练12个月
小钟琴演奏 25.15 (1.95) 27.75 (1.83)
音阶模唱 23.45 (1.64) 27.80 (1.50)
总分 48.60 (2.23) 55.56 (2.43)


表4两组幼儿辨认边界位置及边界宽度的均值和标准差
组别 边界位置 边界宽度
前测 中测 后测 前测 中测 后测
音乐组 4.84 (0.44) 4.81 (0.49) 4.79 (0.50) 1.67 (0.29) 1.51 (0.50) 1.17 (0.47)
控制组 4.81 (0.46) 4.77 (0.36) 4.75 (0.51) 1.64 (0.41) 1.59 (0.32) 1.55 (0.36)

表4两组幼儿辨认边界位置及边界宽度的均值和标准差
组别 边界位置 边界宽度
前测 中测 后测 前测 中测 后测
音乐组 4.84 (0.44) 4.81 (0.49) 4.79 (0.50) 1.67 (0.29) 1.51 (0.50) 1.17 (0.47)
控制组 4.81 (0.46) 4.77 (0.36) 4.75 (0.51) 1.64 (0.41) 1.59 (0.32) 1.55 (0.36)



图4两组幼儿辨认和区分结果
图4两组幼儿辨认和区分结果



图5两组幼儿边界宽度分布
图5两组幼儿边界宽度分布



图6两组幼儿区分正确率分布
图6两组幼儿区分正确率分布



图7两组幼儿范畴间刺激和范畴内刺激区分正确率
图7两组幼儿范畴间刺激和范畴内刺激区分正确率



图8训练12个月后音阶模唱成绩与声调范畴感知能力改变的相关性
图8训练12个月后音阶模唱成绩与声调范畴感知能力改变的相关性







[1] Asaridou S. S., & McQueen J. M . (2013). Speech and music shape the listening brain: Evidence for shared domain- general mechanisms. Frontiers in Psychology, 4, 321.
[2] Başkent D., & Gaudrain E . (2016). Musician advantage for speech-on-speech perception. The Journal of the Acoustical Society of America, 139(3), EL51-EL56.
[3] Boersma P., & Weenink D . (2009. Praat: Doing phonetics by computer. Retrived April 22, 2009 from http://www.praat.org
[4] Chen F., Peng G., Yan N., & Wang L . (2017). The development of categorical perception of Mandarin tones in four- to seven-year-old children. Journal of Child Language, 44(6), 1413-1434.
[5] Chen F., Zhang H., Wang S. Y., & Peng G . (2019). Intrinsic cues and vowel categorical perception. Language Science, 18(4), 399-414.
[ 陈飞, 张昊, 王士元, 彭刚 . (2019). 内部因素与元音范畴化感知. 语言科学, 18(4), 339-414.]
[6] Chen Y. H., & Wang J. Y . (2019). The effect of music training on pre-attentive processing of the brain. Advances in Psychological Science, 27(6), 1036-1043.
[ 陈雅弘, 王锦琰 . (2019). 音乐训练对大脑前注意加工的影响. 心理科学进展, 27(6), 1036-1043]
[7] Chobert J., Francois C., Velay J. L., & Besson M . (2014). Twelve months of active musical training in 8- to 10-year-old children enhances the preattentive processing of syllabic duration and voice onset time. Cerebral Cortex, 24(4), 956-967.
[8] Christiner M., & Reiterer S. M . (2015). A Mozart is not a Pavarotti: Singers outperform instrumentalists on foreign accent imitation. Frontiers in Human Neuroscience, 9, 482.
[9] Degé F., & Schwarzer G . (2011). The effect of a music program on phonological awareness in preschoolers. Frontiers in Psychology, 2, 124.
[10] Du Y., & Zatorre R. J . (2017). Musical training sharpens and bonds ears and tongue to hear speech better. Proceedings of the National Academy of Sciences of the United States of America, 114(51), 13579-13584.
[11] Finney D. J. (Ed). (1971). Probit Analysis. Cambridge: Cambridge University Press.
[12] Francois C., Chobert J., Besson M., & Schön D . (2013). Music training for the development of speech segmentation. Cerebral Cortex, 23(9), 2038-2043.
[13] Hallé P. A., Chang Y. C., & Best C. T . (2004). Identification and discrimination of Mandarin Chinese tones by Mandarin Chinese vs. French listeners. Journal of Phonetics, 32(3), 395-421.
[14] Hutka S., Bidelman G. M., & Moreno S . (2015). Pitch expertise is not created equal: Cross-domain effects of musicianship and tone language experience on neural and behavioural discrimination of speech and music. Neuropsychologia, 71, 52-63.
[15] Hazan V., & Barrett S . (2000). The development of phonemic categorization in children aged 6-12. Journal of Phonetics, 28(4), 377-396.
[16] Herholz S. C., & Zatorre R. J . (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron, 76(3), 486-502.
[17] Kuehnis J., Elmer S., Meyer M., & Jaencke L . (2013). The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study. Neuropsychologia, 51(8), 1608-1618.
[18] Kuhl P. K., Stevens E., Hayashi A., Deguchi T., Kiritani S., & Iverson P . (2006). Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Developmental Science, 9(2), F13-F21.
[19] Lappe C., Herholz S. C., Trainor L. J., & Pantev C . (2008). Cortical plasticity induced by short-term unimodal and multimodal musical training. Journal of Neuroscience, 28(39), 9632-9639.
[20] Lee H., & Noppeney U . (2011). Long-term music training tunes how the brain temporally binds signals from multiple senses. Proceedings of the National Academy of Sciences of the United States of America, 108(51), E1441-E1450.
[21] Lenroot R. K., Schmitt J. E., Ordaz S. J., Wallace G. L., Neale M. C., Lerch J. P., … Giedd J. N . (2009). Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Human Brain Mapping, 30(1), 163-174.
[22] Liberman A. M., Harris K. S., Hoffman H. S., & Griffith B. C . (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54(5), 358-368.
[23] Marie C., Magne C., & Besson M . (2011). Musicians and the metric structure of words. Journal of Cognitive Neuroscience, 23(2), 294-305.
[24] Marie C., Kujala T., & Besson M . (2012). Musical and linguistic expertise influence pre-attentive and attentive processing of non-speech sounds. Cortex, 48(4), 447-457.
[25] Milovanov R., Huotilainen M., Esquef P. A. A., Alku P., Valimaki V., & Tervaniemi M . (2009). The role of musical aptitude and language skills in preattentive duration processing in school-aged children. Neuroscience Letters, 460(2), 161-165.
[26] Miyazaki K., & Ogawa Y . (2006). Learning absolute pitch by children: A cross-sectional study. Music Perception, 24(1), 63-78.
[27] Moreno S., Marques C., Santos A., Santos M., Castro S. L., & Besson M . (2009). Musical training influences linguistic abilities in 8-year-old children: More evidence for brain plasticity. Cerebral Cortex, 19(3), 712-723.
[28] Nan Y . (2017). The facilitation effect of music learning on speech processing. Advances in Psychological Science, 25(11), 1844-1853.
[ 南云 . (2017). 音乐学习对语言加工的促进作用. 心理科学进展, 25(11), 1844-1853.]
[29] Nan Y., Liu L., Geiser E., Shu H., Gong C. C., Dong Q., … Desimone R . (2018). Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. Proceedings of the National Academy of Sciences of the United States of America, 115(28), E6630-E6639.
[30] Pascual-Leone A., Amedi A., Fregni F., & Merabet L. B . (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377-401.
[31] Patel A. D. (2008). Music, Language, and the Brain. Oxford: Oxford University Press.
[32] Patel A. D . (2014). Can nonlinguistic musical training change the way the brain processes speech? The expanded OPERA hypothesis. Hearing Research, 308, 98-108.
[33] Peng G., Zheng H. Y., Gong T., Yang R. X., Kong J. P., & Wang W. S. Y. (2010). The influence of language experience on categorical perception of pitch contours. Journal of Phonetics, 38(4), 616-624.
[34] Peretz I . (2009). Music, language and modularity framed in action. Psychologica Belgica, 49(2-3), 157-175.
[35] Peretz I., & Coltheart M . (2003). Modularity of music processing. Nature Neuroscience, 6(7), 688-691.
[36] Sadakata M., & Sekiyama K . (2011). Enhanced perception of various linguistic features by musicians: A cross-linguistic study. Acta Psychologica, 138(1), 1-10.
[37] Sares A. G., Foster N. E. V., Allen K., & Hyde K. L . (2018). Pitch and time processing in speech and tones: The effects of musical training and attention. Journal of Speech Language and Hearing Research, 61(3), 496-509.
[38] Shaw P., Greenstein D., Lerch J., Clasen L., Lenroot R., Gogtay N., … Giedd J . (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440(7084), 676-679.
[39] Strait D. L., Parbery-Clark A., O'Connell S., & Kraus N . (2013). Biological impact of preschool music classes on processing speech in noise. Developmental Cognitive Neuroscience, 6, 51-60.
[40] Schön D., Magne C., & Besson M . (2004). The music of speech: Music training facilitates pitch processing in both music and language. Psychophysiology, 41(3), 341-349.
[41] Takeuchi A. H., & Hulse S. H . (1993). Absolute pitch. Psychological Bulletin, 113(2), 345-361.
[42] Tang W., Xiong W., Zhang Y. X., Dong Q., & Nan Y . (2016). Musical experience facilitates lexical tone processing among Mandarin speakers: Behavioral and neural evidence. Neuropsychologia, 91, 247-253.
[43] Tervaniemi M., Castaneda A., Knoll M., & Uther M . (2006). Sound processing in amateur musicians and nonmusicians: Event-related potential and behavioral indices. Neuroreport, 17(11), 1225-1228.
[44] Vuust P., Brattico E., Seppanen M., Naatanen R., & Tervaniemi M . (2012). The sound of music: Differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia, 50(7), 1432-1443.
[45] Weiß R., & Osterland J . (Eds). (1977). Grundintelligenztest CFT 1. Braunschweig: Westermann.
[46] Wong P. C. M., & Perrachione T. K . (2007). Learning pitch patterns in lexical identification by native English-speaking adults. Applied Psycholinguistics, 28(4), 565-585.
[47] Wong P., Schwartz R. G., & Jenkins J. J . (2005). Perception and production of lexical tones by 3-year-old, Mandarin- speaking children. Journal of Speech Language and Hearing Research, 48(5), 1065-1079.
[48] Wu H., Ma X., Zhang L., Liu Y., Zhang Y., & Shu H . (2015). Musical experience modulates categorical perception of lexical tones in native Chinese speakers. Frontiers in Psychology, 6, 436.
[49] Xi J., Jiang W., Zhang L. J., & Shu H . (2009). Categorical perception of VOT and lexical tones in Chinese and the developmental course. Acta Psychologia Sinica, 41(7), 572-579.
[ 席洁, 姜薇, 张林军, 舒华 . (2009). 汉语语言范畴性知觉及其发展. 心理学报, 41(7), 572-579.]
[50] Xu Y., Gandour J. T., & Francis A. L . (2006). Effects of language experience and stimulus complexity on the categorical perception of pitch direction. Journal of the Acoustical Society of America, 120(2), 1063-1074.
[51] Zhang Y., Kuhl P. K., Imada T., Kotani M., & Tohkura Y . (2005). Effects of language experience: Neural commitment to language-specific auditory patterns. Neuroimage, 26(3), 703-720.
[52] Zhao T. C., & Kuhl P. K . (2016). Musical intervention enhances infants' neural processing of temporal structure in music and speech. Proceedings of the National Academy of Sciences of the United States of America, 113(19), 5212-5217.
[53] Zheng H. Y., Peng G., Chen J. Y., Zhang C., Minett J. W., & Wang W. S. Y. (2014). Influence of tone inventory on ERP without focal attention: A cross-language study. Computational and Mathematical Methods in Medicine, 2014, 1-7.




[1]张政华, 韩梅, 张放, 李卫君. 音乐训练促进诗句韵律整合加工的神经过程[J]. 心理学报, 2020, 52(7): 847-860.
[2]陈洁佳, 周翊, 陈杰. 音乐训练与抑制控制的关系:来自ERPs的证据[J]. 心理学报, 2020, 52(12): 1365-1376.
[3]梅磊磊,李燕芳,龙柚杉,陈传升,董奇. 材料呈现方式对不同音乐训练经验的汉语儿童英语言语记忆的影响[J]. 心理学报, 2008, 40(08): 883-889.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4685
相关话题/音乐 实验 心理 成绩 测试