删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

人类镜像系统参与音乐情绪的自动加工:来自EEG的证据

本站小编 Free考研考试/2022-01-01

赵怀阳1, 江俊2, 周临舒2, 蒋存梅2()
1 上海师范大学教育学院
2 上海师范大学音乐学院, 上海 200234
收稿日期:2018-09-21出版日期:2019-07-25发布日期:2019-05-22
通讯作者:蒋存梅E-mail:cunmeijiang@126.com

基金资助:* 国家自然科学基金项目资助(31470972);* 国家自然科学基金项目资助(31500876)

Role of the human mirror system in automatic processing of musical emotion: Evidence from EEG

ZHAO Huaiyang1, JIANG Jun2, ZHOU Linshu2, JIANG Cunmei2()
1 Department of Psychology, College of Education, Shanghai Normal University, Shanghai 200234, China
2 Music College, Shanghai Normal University, Shanghai 200234, China
Received:2018-09-21Online:2019-07-25Published:2019-05-22
Contact:JIANG Cunmei E-mail:cunmeijiang@126.com






摘要/Abstract


摘要: 大脑中线电极诱发的μ抑制波(包括α和β频段)是人类镜像系统活动的电生理指标。尽管音乐情绪表现被认为是通过模仿个体的心理状态来实现的, 但是尚未有研究探讨人类镜像系统与音乐情绪加工的关系。本研究通过EEG技术, 采用跨通道情绪启动范式, 探究人类镜像系统是否参与和弦情绪的自动加工。愉悦或不愉悦的和弦启动情绪一致与不一致的目标面孔。行为结果显示, 被试对情绪一致面孔的反应显著快于情绪不一致面孔的反应。EEG结果显示, 在听觉刺激出现后的500~650 ms之间, 与情绪一致条件相比, 情绪不一致条件诱发了β频段的去同步化。在听觉刺激出现后的300~450 ms, 无论是情绪一致, 还是不一致条件, 都诱发了α频段的去同步化。源分析结果显示, μ抑制波主要出现在人类镜像系统的相关脑区。这些结果表明, 音乐情绪的自动加工与人类镜像系统的活动密切相关。



图1实验刺激样例
图1实验刺激样例



图2Fz电极点β和α频段的频率分析结果 注:(a)为情绪不一致条件, (b)为情绪一致条件, 黑色虚线框内是本实验分析的频段和时间。
图2Fz电极点β和α频段的频率分析结果 注:(a)为情绪不一致条件, (b)为情绪一致条件, 黑色虚线框内是本实验分析的频段和时间。



图3β频段(a)和α频段(b)源分析结果
图3β频段(a)和α频段(b)源分析结果







[1] Arnstein D., Cui F., Keysers C., Maurits N. M., & Gazzola V . ( 2011). μ-suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices. The Journal of Neuroscience, 31( 40), 14243-14249.
doi: 10.1523/JNEUROSCI.0963-11.2011URL
[2] Bechtold L., Ghio M., Lange J., & Bellebaum C . ( 2018). Event-related desynchronization of mu and beta oscillations during the processing of novel tool names. Brain and Language, 177-178, 44-55.
doi: 10.1016/j.bandl.2018.01.004URL
[3] Berntsen M. B., Cooper N. R., & Romei V . ( 2017). Transcranial alternating current stimulation to the inferior parietal lobe decreases mu suppression to egocentric, but not allocentric hand movements. Neuroscience, 344, 124-132.
doi: 10.1016/j.neuroscience.2016.12.045URL
[4] Blood A. J., Zatorre R. J., Bermudez P., & Evans A. C . ( 1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 2( 4), 382-387.
doi: 10.1038/7299
[5] Braadbaart L., Williams J. H. G., & Waiter G. D . ( 2013). Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation? International Journal of Psychophysiology, 89( 1), 99-105.
doi: 10.1016/j.ijpsycho.2013.05.019URL
[6] Carr L., Iacoboni M., Dubeau M. C., Mazziotta J. C., & Lenzi G. L . ( 2003). Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences of the United States of America, 100( 9), 5497-5502.
doi: 10.1073/pnas.0935845100URL
[7] Caspers S., Zilles K., Laird A. R., & Eickhoff S. B . ( 2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50( 3), 1148-1167.
doi: 10.1016/j.neuroimage.2009.12.112URL
[8] Chan L. P., Livingstone S. R., & Russo F. A . ( 2013). Facial mimicry in response to song. Music Perception, 30( 4), 361-367.
doi: 10.1525/mp.2013.30.4.361URL
[9] Chen X. H., Pan Z. H., Wang P., Yang X. H., Liu P., You X. Q., & Yuan J. J . ( 2016). The integration of facial and vocal cues during emotional change perception: EEG markers. Social Cognitive and Affective Neuroscience, 11( 7), 1152-1161.
doi: 10.1093/scan/nsv083URL
[10] Cohen M. X., & Ridderinkhof K. R . ( 2013). EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing. PLoS ONE, 8( 2), e57293. doi: 10.1371/journal.pone.0057293
doi: 10.1371/journal.pone.0057293URL
[11] Collins A. M., & Loftus E. F . ( 1975). A spreading-activation theory of semantic processing. Psychological Review, 82( 6), 407-428.
doi: 10.1037/0033-295X.82.6.407URL
[12] Crowder R. G., Reznick J. S., & Rosenkrantz S. L . ( 1991). Perception of the major/minor distinction: V. Preferences among infants. Bulletin of the Psychonomic Society, 29( 3), 187-188.
doi: 10.3758/BF03342673URL
[13] Davies S. , (1994). Musical meaning and expression. New York, NY: Cornell University Press.
[14] de Groot A. M. B, . ( 1984). Primed lexical decision: Combined effects of the proportion of related prime-target pairs and the stimulus-onset asynchrony of prime and target. The Quarterly Journal of Experimental Psychology Section A, 36( 2), 253-280.
doi: 10.1080/14640748408402158URL
[15] Debnath R., Salo V. C., Buzzell G. A., Yoo K. H., & Fox N. A . ( 2019). Mu rhythm desynchronization is specific to action execution and observation: Evidence from time-frequency and connectivity analysis. NeuroImage, 184, 496-507.
doi: 10.1016/j.neuroimage.2018.09.053URL
[16] Désy M. C., & Lepage J. F . ( 2013). Skin color has no impact on motor resonance: Evidence from mu rhythm suppression and imitation. Neuroscience Research, 77( 1-2), 58-63.
doi: 10.1016/j.neures.2013.08.003URL
[17] Di Cesare G., Fasano F., Errante A., Marchi M., & Rizzolatti G . ( 2016). Understanding the internal states of others by listening to action verbs. Neuropsychologia, 89, 172-179.
doi: 10.1016/j.neuropsychologia.2016.06.017URL
[18] Faul F., Erdfelder E., Lang A. G., & Buchner A . ( 2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39( 2), 175-191.
doi: 10.3758/BF03193146URL
[19] Fox N. A., Bakermans-Kranenburg M. J., Yoo K. H., Bowman L. C., Cannon E. N., Vanderwert R. E., van Ijzendoorn, M. H. ., ( 2016). Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychological Bulletin, 142( 3), 291-313.
doi: 10.1037/bul0000031URL
[20] Frenkel-Toledo S., Bentin S., Perry A., Liebermann D. G., & Soroker N . ( 2013). Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements. Brain Research, 1509, 43-57.
doi: 10.1016/j.brainres.2013.03.004URL
[21] Fu Y., & Franz E. A . ( 2014). Viewer perspective in the mirroring of actions. Experimental Brain Research, 232( 11), 3665-3674.
doi: 10.1007/s00221-014-4042-6URL
[22] Gazzola V., Aziz-Zadeh L., & Keysers C . ( 2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16( 18), 1824-1829.
doi: 10.1016/j.cub.2006.07.072URL
[23] Goerlich K. S., Witteman J., Schiller N. O., Van Heuven V. J., Aleman A., & Martens S . ( 2012). The nature of affective priming in music and speech. Journal of Cognitive Neuroscience, 24( 8), 1725-1741.
doi: 10.1162/jocn_a_00213URL
[24] Gong Y., Huang Y. X., Wang Y., & Luo Y. J . ( 2011). Revision of the Chinese facial affective picture system. Chinese Mental Health Journal, 25( 1), 40-46.
[ 龚栩, 黄宇霞, 王妍, 罗跃嘉 . ( 2011). 中国面孔表情图片系统的修订. 中国心理卫生杂志, 25( 1), 40-46. ]
[25] Gramfort A., Papadopoulo T., Olivi E., & Clerc M . ( 2010). OpenMEEG: Opensource software for quasistatic bioelectromagnetics. BioMedical Engineering OnLine, 9( 1), 45. doi: 10.1186/1475-925X-9-45
doi: 10.1186/1475-925X-9-45URL
[26] Hétu S., Grégoire M., Saimpont A., Coll M. P., Eugène F., Michon P. E., & Jackson P. L . ( 2013). The neural network of motor imagery: An ALE meta-analysis. Neuroscience & Biobehavioral Reviews, 37( 5), 930-949.
[27] Hobson H. M., & Bishop D. V. M . ( 2016). Mu suppression - A good measure of the human mirror neuron system? Cortex, 82, 290-310.
doi: 10.1016/j.cortex.2016.03.019URL
[28] Hobson H. M., & Bishop D. V. M . ( 2017). The interpretation of mu suppression as an index of mirror neuron activity: Past, present and future. Royal Society Open Science, 4( 3). doi: 10.1098/rsos.160662
[29] Iacoboni M. & Dapretto M. ,( 2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7( 12), 942-951.
doi: 10.1038/nrn2024
[30] Iacoboni M., Woods R. P., Brass M., Bekkering H., Mazziotta J. C., & Rizzolatti G . ( 1999). Cortical mechanisms of human imitation. Science, 286( 5449), 2526-2528.
doi: 10.1126/science.286.5449.2526URL
[31] Jardri R., Pins D., Bubrovszky M., Despretz P., Pruvo J. P., Steinling M., & Thomas P . ( 2007). Self awareness and speech processing: An fMRI study. NeuroImage, 35( 4), 1645-1653.
doi: 10.1016/j.neuroimage.2007.02.002URL
[32] Johnson-Laird P. N., & Oatley, K., ,( 2008). Emotions, music, and literature. In M. Lewis, J. M. Haviland-Jones, & L. F. Barrett (Eds.), Handbook of emotions (3rd ed., pp. 102-113). New York, NY: The Guilford Press.
[33] Johnson-Laird P. N., Kang O. E., & Leong Y. C . ( 2012). On musical dissonance. Music Perception, 30( 1), 19-35.
doi: 10.1525/mp.2012.30.1.19URL
[34] Keuken M. C., Hardie A., Dorn B. T., Dev S., Paulus M. P., Jonas K. J., .. Pineda J. A . ( 2011). The role of the left inferior frontal gyrus in social perception: An rTMS study. Brain Research, 1383, 196-205.
doi: 10.1016/j.brainres.2011.01.073URL
[35] Koelsch S. , ( 2013). Brain and music. West Sussex, UK: John Wiley & Sons.
[36] Koelsch S., Fritz T., v. Cramon D. Y., Müller K., & Friederici A. D . ( 2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27( 3), 239-250.
doi: 10.1002/(ISSN)1097-0193URL
[37] Kuhlman W. N . ( 1978). Functional topography of the human mu rhythm Topographie fonctionnelle du rythme mu chez l'homme. Electroencephalography and Clinical Neurophysiology, 44( 1), 83-93.
doi: 10.1016/0013-4694(78)90107-4URL
[38] Lamm C., Decety J., & Singer T . ( 2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54( 3), 2492-2502.
doi: 10.1016/j.neuroimage.2010.10.014URL
[39] Leman M. , (2007). Embodied music cognition and mediation technology. Cambridge,MA: The MIT Press.
[40] Lense M. D., Gordon R. L., Key A. P. F., & Dykens E. M . ( 2014). Neural correlates of cross-modal affective priming by music in Williams syndrome. Social Cognitive and Affective Neuroscience, 9( 4), 529-537.
doi: 10.1093/scan/nst017URL
[41] Liao Y., Acar Z. A., Makeig S., & Deak G . ( 2015). EEG imaging of toddlers during dyadic turn-taking: Mu-rhythm modulation while producing or observing social actions. NeuroImage, 112, 52-60.
doi: 10.1016/j.neuroimage.2015.02.055URL
[42] Lin F. H., Witzel T., Ahlfors S. P., Stufflebeam S. M., Belliveau J. W., & Hämäläinen M. S . ( 2006). Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. NeuroImage, 31( 1), 160-171.
doi: 10.1016/j.neuroimage.2005.11.054URL
[43] Lindquist K. A., Satpute A. B., Wager T. D., Weber J., & Barrett L. F . ( 2016). The brain basis of positive and negative affect: Evidence from a meta-analysis of the human neuroimaging literature. Cerebral Cortex, 26( 5), 1910-1922.
doi: 10.1093/cercor/bhv001URL
[44] Logeswaran N. & Bhattacharya J. , ( 2009). Crossmodal transfer of emotion by music. Neuroscience Letters, 455( 2), 129-133.
doi: 10.1016/j.neulet.2009.03.044URL
[45] Lui F., Buccino G., Duzzi D., Benuzzi F., Crisi G., Baraldi P., .. Rizzolatti G . ( 2008). Neural substrates for observing and imagining non-object-directed actions. Social Neuroscience, 3( 3-4), 261-275.
doi: 10.1080/17470910701458551URL
[46] Mizuhara H. , ( 2012). Cortical dynamics of human scalp EEG origins in a visually guided motor execution. NeuroImage, 62( 3), 1884-1895.
doi: 10.1016/j.neuroimage.2012.05.072URL
[47] Molenberghs P., Cunnington R., & Mattingley J. B . ( 2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience & Biobehavioral Reviews, 36( 1), 341-349.
[48] Molnar-Szakacs I., & Overy K. , ( 2006). Music and mirror neurons: From motion to ’e’motion. Social Cognitive and Affective Neuroscience, 1( 3), 235-241.
doi: 10.1093/scan/nsl029URL
[49] Moore A., Gorodnitsky I., & Pineda J . ( 2012). EEG mu component responses to viewing emotional faces. Behavioural Brain Research, 226( 1), 309-316.
doi: 10.1016/j.bbr.2011.07.048URL
[50] Moore M. R., & Franz, E. A . ( 2017). Mu rhythm suppression is associated with the classification of emotion in faces. Cognitive, Affective, & Behavioral Neuroscience, 17( 1), 224-234.
[51] Musch J., & Klauer K. C . ( 2003). The psychology of evaluation: Affective processes in cognition and emotion. Mahwah, NJ: Lawrence Erlbaum Associates.
[52] Muthukumaraswamy S. D., & Singh K. D . ( 2008). Modulation of the human mirror neuron system during cognitive activity. Psychophysiology, 45( 6), 896-905.
doi: 10.1111/psyp.2008.45.issue-6URL
[53] Neely J. H . ( 1977). Semantic priming and retrieval from lexical memory: Roles of inhibitionless spreading activation and limited-capacity attention. Journal of Experimental Psychology: General, 106( 3), 226-254.
doi: 10.1037/0096-3445.106.3.226URL
[54] Nigbur R., Cohen M. X., Ridderinkhof K. R., & Stürmer B . ( 2012). Theta dynamics reveal domain-specific control over stimulus and response conflict. Journal of Cognitive Neuroscience, 24( 5), 1264-1274.
doi: 10.1162/jocn_a_00128URL
[55] Peled-Avron L., Goldstein P., Yellinek S., Weissman-Fogel I., & Shamay-Tsoory S. G . ( 2018). Empathy during consoling touch is modulated by mu-rhythm: An EEG study. Neuropsychologia, 116, 68-74
doi: 10.1016/j.neuropsychologia.2017.04.026URL
[56] Phillips M. L., Young A. W., Senior C., Brammer M., Andrew C., Calder A. J., .. David A. S . ( 1997). A specific neural substrate for perceiving facial expressions of disgust. Nature, 389( 6650), 495-498.
doi: 10.1038/39051
[57] Rayson H., Bonaiuto J. J., Ferrari P. F., & Murray L . ( 2016). Mu desynchronization during observation and execution of facial expressions in 30-month-old children. Developmental Cognitive Neuroscience, 19, 279-287.
doi: 10.1016/j.dcn.2016.05.003URL
[58] Ricciardi E., Bonino D., Sani L., Vecchi T., Guazzelli M., Haxby J. V., … Pietrini P . ( 2009). Do we really need vision? How blind people “see” the actions of others. The Journal of Neuroscience, 29( 31), 9719-9724.
doi: 10.1523/JNEUROSCI.0274-09.2009URL
[59] Rizzolatti G.& Craighero L. , ( 2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169-192.
doi: 10.1146/annurev.neuro.27.070203.144230URL
[60] Sakreida K., Higuchi S., Di Dio C., Ziessler M., Turgeon M., Roberts N., & Vogt S . ( 2018). Cognitive control structures in the imitation learning of spatial sequences and rhythms—An fMRI study. Cerebral Cortex, 28( 3), 907-923.
doi: 10.1093/cercor/bhw414URL
[61] Schneider T. R., Debener S., Oostenveld R., & Engel A. K . ( 2008). Enhanced EEG gamma-band activity reflects multisensory semantic matching in visual-to-auditory object priming. NeuroImage, 42( 3), 1244-1254.
doi: 10.1016/j.neuroimage.2008.05.033URL
[62] Sievers B., Polansky L., Casey M., & Wheatley T . ( 2013). Music and movement share a dynamic structure that supports universal expressions of emotion. Proceedings of the National Academy of Sciences of the United States of America, 110( 1), 70-75.
doi: 10.1073/pnas.1209023110URL
[63] Simos P. G., Kavroulakis E., Maris T., Papadaki E., Boursianis T., Kalaitzakis G., & Savaki H. E . ( 2017). Neural foundations of overt and covert actions. NeuroImage, 152, 482-496.
doi: 10.1016/j.neuroimage.2017.03.036URL
[64] Singer T., Seymour B., Doherty J., Kaube H., Dolan R. J., & Frith C. D . ( 2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303( 5661), 1157-1162.
doi: 10.1126/science.1093535URL
[65] Sollberge B., Rebe R., & Eckstein D . ( 2003). Musical chords as affective priming context in a word-evaluation task. Music Perception, 20( 3), 263-282.
doi: 10.1525/mp.2003.20.3.263URL
[66] Stančák A., Riml A., & Pfurtscheller G . ( 1997). The effects of external load on movement-related changes of the sensorimotor EEG rhythms. Electroencephalography and Clinical Neurophysiology, 102( 6), 495-504.
[67] Steinbeis N. & Koelsch S. ,( 2008). Comparing the processing of music and language meaning using EEG and fMRI provides evidence for similar and distinct neural representations. PLoS ONE, 3( 5), e2226. doi: 10.1371/journal.pone. 0002226
doi: 10.1371/journal.pone.0002226URL
[68] Steinbeis N. & Koelsch S. , ( 2011). Affective priming effects of musical sounds on the processing of word meaning. Journal of Cognitive Neuroscience, 23( 3), 604-621.
doi: 10.1162/jocn.2009.21383URL
[69] Tang D. D., Hu L., & Chen A. T . ( 2013). The neural oscillations of conflict adaptation in the human frontal region. Biological Psychology, 93( 3), 364-372.
doi: 10.1016/j.biopsycho.2013.03.004URL
[70] Tettamanti M., Buccino G., Saccuman M. C., Gallese V., Danna M., Scifo P., … Perani D . ( 2005). Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience, 17( 2), 273-281.
doi: 10.1162/0898929053124965URL
[71] Tettamanti M., Manenti R., Della Rosa P. A., Falini A., Perani D., Cappa S. F., & Moro A . ( 2008). Negation in the brain: Modulating action representations. NeuroImage, 43( 2), 358-367.
doi: 10.1016/j.neuroimage.2008.08.004URL
[72] Tzagarakis C., Ince N. F., Leuthold A. C., & Pellizzer G . ( 2010). Beta-band activity during motor planning reflects response uncertainty. The Journal of Neuroscience, 30( 34), 11270-11277.
doi: 10.1523/JNEUROSCI.6026-09.2010URL
[73] van Elk M., van Schie H. T., Zwaan R. A., & Bekkering H . ( 2010). The functional role of motor activation in language processing: Motor cortical oscillations support lexical-semantic retrieval. NeuroImage, 50( 2), 665-677.
doi: 10.1016/j.neuroimage.2009.12.123URL
[74] Warren J. E., Sauter D. A., Eisner F., Wiland J., Dresner M. A., Wise R. J., … Scott S. K . ( 2006). Positive emotions preferentially engage an auditory-motor “mirror” system. The Journal of Neuroscience, 26( 50), 13067-13075.
doi: 10.1523/JNEUROSCI.3907-06.2006URL
[75] Wicker B., Keysers C., Plailly J., Royet J. P., Gallese V., & Rizzolatti G . ( 2003). Both of us disgusted in My insula: The common neural basis of seeing and feeling disgust. Neuron, 40( 3), 655-664.
doi: 10.1016/S0896-6273(03)00679-2URL
[76] Wolpaw J. R., McFarland D. J., Neat G. W., & Forneris C. A . ( 1991). An EEG-based brain-computer interface for cursor control. Electroencephalography and Clinical Neurophysiology, 78( 3), 252-259.
doi: 10.1016/0013-4694(91)90040-BURL
[77] Yang C. Y., Decety J., Lee S., Chen C., & Cheng Y. W . ( 2009). Gender differences in the mu rhythm during empathy for pain: An electroencephalographic study. Brain Research, 1251, 176-184.
doi: 10.1016/j.brainres.2008.11.062URL
[78] Zhang Y., Chen Y. H., Bressler S. L., & Ding M. Z . ( 2008). Response preparation and inhibition: The role of the cortical sensorimotor beta rhythm. Neuroscience, 156( 1), 238-246.
doi: 10.1016/j.neuroscience.2008.06.061URL




[1]祁亚鹏, 王怡萱, 朱桦, 周成林, 王莹莹. 长期高策略性技能训练对运动员大脑白质结构的影响:一项DTI研究[J]. 心理学报, 2021, 53(7): 798-806.
[2]莫李澄, 郭田友, 张岳瑶, 徐锋, 张丹丹. 激活右腹外侧前额叶提高抑郁症患者对社会疼痛的情绪调节能力:一项TMS研究[J]. 心理学报, 2021, 53(5): 494-504.
[3]雷震, 毕蓉, 莫李澄, 于文汶, 张丹丹. 外显和内隐情绪韵律加工的脑机制:近红外成像研究[J]. 心理学报, 2021, 53(1): 15-25.
[4]金花, 梁紫平, 朱子良, 严世振, 林琳, 艾克旦·艾斯卡尔, 尹建忠, 姜云鹏, 田鑫. 整体运动知觉老化伴随颞中回静息态功能改变[J]. 心理学报, 2021, 53(1): 38-54.
[5]崔芳, 杨佳苗, 古若雷, 刘洁. 右侧颞顶联合区及道德加工脑网络的功能连接预测社会性框架效应:来自静息态功能磁共振的证据[J]. 心理学报, 2021, 53(1): 55-66.
[6]田相娟, 曹衍淼, 张文新. 母亲消极教养、同伴侵害与FKBP5基因对青少年抑郁的影响[J]. 心理学报, 2020, 52(12): 1407-1420.
[7]尹彬, 武晓睿, 连榕. 整合性学习观的动物行为模型探索[J]. 心理学报, 2020, 52(11): 1278-1287.
[8]任志洪, 赵子仪, 余香莲, 赵春晓, 张琳, 林羽中, 张微. 睾酮素与反社会倾向未成年犯的攻击行为:敌意注意偏向的中介和皮质醇的调节作用[J]. 心理学报, 2020, 52(11): 1288-1300.
[9]王丽君, 索涛, 赵国祥. 未意识到错误影响错误后调整的电生理证据[J]. 心理学报, 2020, 52(10): 1189-1198.
[10]蒋宇宸, 蔡笑, 张清芳. θ频段(4~8 Hz)的活动反映了汉语口语产生中音节信息的加工[J]. 心理学报, 2020, 52(10): 1199-1211.
[11]华艳, 李明霞, 王巧婷, 冯彩霞, 张晶. 左侧眶额皮层在自动情绪调节下注意选择中的作用:来自经颅直流电刺激的证据[J]. 心理学报, 2020, 52(9): 1048-1056.
[12]刘洁, 李瑾琪, 申超然, 胡小惠, 赵庭浩, 关青, 罗跃嘉. 数学焦虑个体近似数量加工的神经机制:一项EEG研究[J]. 心理学报, 2020, 52(8): 958-970.
[13]李琎, 孙宇, 杨子鹿, 钟毅平. 社会价值取向对自我社会奖赏加工的影响——来自ERPs的证据[J]. 心理学报, 2020, 52(6): 786-800.
[14]吕薇. 回避与趋近性负性人格特质对应激心血管反应模式的不同影响[J]. 心理学报, 2020, 52(6): 758-776.
[15]侯璐璐, 陈莅蓉, 周仁来. 经前期综合征与奖赏进程失调——来自脑电的证据[J]. 心理学报, 2020, 52(6): 742-757.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4474
相关话题/心理 实验 系统 人类 社会