1杭州师范大学教育学院, 杭州 311121
2山西师范大学心理学系, 临汾 041004
3浙江大学心理与行为科学系, 杭州 310028
4西南民族大学教育学与心理学学院, 成都 610041
收稿日期:
2019-10-22出版日期:
2020-09-25发布日期:
2020-09-04通讯作者:
张智君E-mail:zjzhang@zju.edu.cn基金资助:
* 国家社会科学基金青年项目(17CYY059)Predictability impacts word and character processing in Chinese reading: Evidence from eye movements
LIU Zhifang1, TONG Wen2, ZHANG Zhijun3(), ZHAO Yajun41College of Education, Hangzhou Normal University, Hangzhou 311121, China
2Department of Psychology, Shanxi Normal University, Linfen 041004, China
3Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China
4College of Education and Psychology, Southwest Minzu University, Chengdu 610041, China
Received:
2019-10-22Online:
2020-09-25Published:
2020-09-04Contact:
ZHANG Zhijun E-mail:zjzhang@zju.edu.cn摘要/Abstract
摘要: 研究包含3项实验, 通过观察语境预测性与目标词汇的整词词频、词内汉字字频间交互作用, 以探讨阅读中语境预测性如何影响中文词汇加工问题。研究以双字词为例, 实验1操控目标词汇的语境预测性与整词词频, 结果发现, 语境预测性与整词词频交互作用不显著。实验2操控目标词汇的语境预测性与首字字频, 结果发现, 语境预测性与首字字频交互作用不显著。实验1和实验2的贝叶斯分析都倾向于支持交互作用不存在假设。实验3操控目标词汇的语境预测性与尾字字频, 结果发现, 语境预测性与尾字字频交互影响首次注视时间、凝视时间、总注视时间和再注视概率。由此可知, 语境预测性与整词词频、首字字频变量相对独立地影响词汇加工; 语境预测性直接影响词内汉字(尾字)的加工过程。
图/表 12
表1实验1四种目标词汇的字频、笔画数, 整词词频和语境预测性参数均值和标准差
目标词汇种类 | 语境预测性 | 整词词频 | 首字字频 | 尾字字频 | 首字笔画数 | 尾字笔画数 |
---|---|---|---|---|---|---|
高预测性-高频 | 0.74 (0.14) | 111.60 (62.59) | 792.27 (537.11) | 597.95 (435.01) | 7.45 (2.87) | 7.60 (2.68) |
低预测性-低频 | 0.01 (0.01) | 3.42 (0.72) | 798.27 (1038.02) | 684.40 (545.69) | 7.25 (3.54) | 7.25 (2.17) |
高预测性-低频 | 0.74 (0.17) | 3.69 (1.30) | 630.24 (818.67) | 554.74 (571.21) | 7.60 (2.60) | 7.65 (2.52) |
低预测性-高频 | 0.01 (0.02) | 113.94 (60.21) | 729.21 (531.07) | 768.29 (580.95) | 7.20 (2.53) | 7.65 (1.53) |
表1实验1四种目标词汇的字频、笔画数, 整词词频和语境预测性参数均值和标准差
目标词汇种类 | 语境预测性 | 整词词频 | 首字字频 | 尾字字频 | 首字笔画数 | 尾字笔画数 |
---|---|---|---|---|---|---|
高预测性-高频 | 0.74 (0.14) | 111.60 (62.59) | 792.27 (537.11) | 597.95 (435.01) | 7.45 (2.87) | 7.60 (2.68) |
低预测性-低频 | 0.01 (0.01) | 3.42 (0.72) | 798.27 (1038.02) | 684.40 (545.69) | 7.25 (3.54) | 7.25 (2.17) |
高预测性-低频 | 0.74 (0.17) | 3.69 (1.30) | 630.24 (818.67) | 554.74 (571.21) | 7.60 (2.60) | 7.65 (2.52) |
低预测性-高频 | 0.01 (0.02) | 113.94 (60.21) | 729.21 (531.07) | 768.29 (580.95) | 7.20 (2.53) | 7.65 (1.53) |
表2实验1中包含4种目标词汇的框架句子举例
目标词汇种类 | 框架句子 |
---|---|
高预测性-高频 | 公司经理在提高产品质量方面花费了大量精力。 |
低预测性-低频 | 公司经理在提高产品名声方面花费了大量精力。 |
高预测性-低频 | 外星人经常驾驶飞船去往地球的各个角落。 |
低预测性-高频 | 外星人经常驾驶汽车去往地球的各个角落。 |
表2实验1中包含4种目标词汇的框架句子举例
目标词汇种类 | 框架句子 |
---|---|
高预测性-高频 | 公司经理在提高产品质量方面花费了大量精力。 |
低预测性-低频 | 公司经理在提高产品名声方面花费了大量精力。 |
高预测性-低频 | 外星人经常驾驶飞船去往地球的各个角落。 |
低预测性-高频 | 外星人经常驾驶汽车去往地球的各个角落。 |
表3实验1各条件下目标词汇上注视时间类指标和注视概率类指标的均值与标准误差
指标 | 高语境预测性 | 低语境预测性 | ||
---|---|---|---|---|
高频词 | 低频词 | 高频词 | 低频词 | |
首次注视时间 | 221 (2.34) | 223 (2.34) | 228 (2.34) | 241 (2.34) |
凝视时间 | 238 (3.31) | 243 (3.31) | 252 (3.31) | 277 (3.32) |
总注视时间 | 247 (7.48) | 261 (7.48) | 343 (7.49) | 375 (7.48) |
跳读概率 | 30.0 (1.0) | 30.2 (1.0) | 26.7 (1.0) | 24.8 (1.0) |
再注视概率 | 6.2 (0.7) | 7.5 (0.7) | 9.1 (0.7) | 13.3 (0.7) |
回视概率 | 5.6 (0.6) | 7.1 (0.6) | 12.1 (0.6) | 14.1 (0.6) |
表3实验1各条件下目标词汇上注视时间类指标和注视概率类指标的均值与标准误差
指标 | 高语境预测性 | 低语境预测性 | ||
---|---|---|---|---|
高频词 | 低频词 | 高频词 | 低频词 | |
首次注视时间 | 221 (2.34) | 223 (2.34) | 228 (2.34) | 241 (2.34) |
凝视时间 | 238 (3.31) | 243 (3.31) | 252 (3.31) | 277 (3.32) |
总注视时间 | 247 (7.48) | 261 (7.48) | 343 (7.49) | 375 (7.48) |
跳读概率 | 30.0 (1.0) | 30.2 (1.0) | 26.7 (1.0) | 24.8 (1.0) |
再注视概率 | 6.2 (0.7) | 7.5 (0.7) | 9.1 (0.7) | 13.3 (0.7) |
回视概率 | 5.6 (0.6) | 7.1 (0.6) | 12.1 (0.6) | 14.1 (0.6) |
表4实验1混合线性模型分析结果
变量 | 首次注视时间 | 凝视时间 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
b | SE | t | p | 95% CI | b | SE | t | p | 95% CI | |
Intercept | 2.32 | 0.01 | 422.53 | < 0.001 | [2.30, 2.33] | 2.37 | 0.01 | 332.77 | < 0.001 | [2.35, 2.38] |
词频 | 0.02 | 0.00 | 5.38 | < 0.001 | [0.01, 0.02] | 0.03 | 0.00 | 7.42 | < 0.001 | [0.02, 0.03] |
语境预测性 | 0.02 | 0.00 | 7.16 | < 0.001 | [0.02, 0.03] | 0.04 | 0.00 | 10.15 | < 0.001 | [0.03, 0.04] |
词频×语境预测性 | 0.02 | 0.01 | 1.59 | 0.12 | - | 0.03 | 0.02 | 1.45 | 0.16 | - |
变量 | 总注视时间 | 跳读概率 | ||||||||
b | SE | t | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | 2.46 | 0.01 | 225.76 | < 0.001 | [2.44, 2.48] | -1.05 | 0.06 | -17.05 | < 0.001 | [-1.18, -0.93] |
词频 | 0.03 | 0.00 | 5.80 | < 0.001 | [0.02, 0.03] | -0.05 | 0.04 | -1.30 | 0.19 | - |
语境预测性 | 0.10 | 0.00 | 22.99 | < 0.001 | [0.09, 0.11] | -0.23 | 0.04 | -5.64 | < 0.001 | [-0.31, -0.15] |
词频×语境预测性 | 0.01 | 0.04 | 0.35 | 0.73 | - | -0.14 | 0.20 | -0.71 | 0.48 | - |
变量 | 再注视概率 | 回视概率 | ||||||||
b | SE | z | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | -2.78 | 0.10 | -27.81 | < 0.001 | [-2.98, -2.59] | -2.52 | 0.09 | -26.98 | < 0.001 | [-2.70, -2.34] |
词频 | 0.35 | 0.07 | 5.35 | < 0.001 | [0.22, 0.47] | 0.22 | 0.06 | 3.45 | < 0.001 | [0.10, 0.34] |
语境预测性 | 0.56 | 0.07 | 8.69 | < 0.001 | [0.44, 0.69] | 0.84 | 0.06 | 13.23 | < 0.001 | [0.72, 0.97] |
词频×语境预测性 | 0.23 | 0.32 | 0.71 | 0.48 | - | -0.10 | 0.34 | -0.29 | 0.78 | - |
表4实验1混合线性模型分析结果
变量 | 首次注视时间 | 凝视时间 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
b | SE | t | p | 95% CI | b | SE | t | p | 95% CI | |
Intercept | 2.32 | 0.01 | 422.53 | < 0.001 | [2.30, 2.33] | 2.37 | 0.01 | 332.77 | < 0.001 | [2.35, 2.38] |
词频 | 0.02 | 0.00 | 5.38 | < 0.001 | [0.01, 0.02] | 0.03 | 0.00 | 7.42 | < 0.001 | [0.02, 0.03] |
语境预测性 | 0.02 | 0.00 | 7.16 | < 0.001 | [0.02, 0.03] | 0.04 | 0.00 | 10.15 | < 0.001 | [0.03, 0.04] |
词频×语境预测性 | 0.02 | 0.01 | 1.59 | 0.12 | - | 0.03 | 0.02 | 1.45 | 0.16 | - |
变量 | 总注视时间 | 跳读概率 | ||||||||
b | SE | t | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | 2.46 | 0.01 | 225.76 | < 0.001 | [2.44, 2.48] | -1.05 | 0.06 | -17.05 | < 0.001 | [-1.18, -0.93] |
词频 | 0.03 | 0.00 | 5.80 | < 0.001 | [0.02, 0.03] | -0.05 | 0.04 | -1.30 | 0.19 | - |
语境预测性 | 0.10 | 0.00 | 22.99 | < 0.001 | [0.09, 0.11] | -0.23 | 0.04 | -5.64 | < 0.001 | [-0.31, -0.15] |
词频×语境预测性 | 0.01 | 0.04 | 0.35 | 0.73 | - | -0.14 | 0.20 | -0.71 | 0.48 | - |
变量 | 再注视概率 | 回视概率 | ||||||||
b | SE | z | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | -2.78 | 0.10 | -27.81 | < 0.001 | [-2.98, -2.59] | -2.52 | 0.09 | -26.98 | < 0.001 | [-2.70, -2.34] |
词频 | 0.35 | 0.07 | 5.35 | < 0.001 | [0.22, 0.47] | 0.22 | 0.06 | 3.45 | < 0.001 | [0.10, 0.34] |
语境预测性 | 0.56 | 0.07 | 8.69 | < 0.001 | [0.44, 0.69] | 0.84 | 0.06 | 13.23 | < 0.001 | [0.72, 0.97] |
词频×语境预测性 | 0.23 | 0.32 | 0.71 | 0.48 | - | -0.10 | 0.34 | -0.29 | 0.78 | - |
表5实验2四种目标词汇的字频、笔画数、整词词频和语境预测性参数均值和标准差
目标词汇种类 | 语境预测性 | 整词词频 | 首字字频 | 尾字字频 | 首字笔画数 | 尾字笔画数 |
---|---|---|---|---|---|---|
高预测性-首字高频 | 76.1 (19.2) | 12 (12) | 1558 (1062) | 707 (727) | 7.2 (2.1) | 7.7 (2.1) |
低预测性-首字低频 | 0.2 (0.11) | 10 (11) | 51 (27) | 610 (841) | 7.9 (2.1) | 7.3 (2.4) |
高预测性-首字低频 | 78.7 (19.2) | 10 (11) | 38 (27) | 641 (884) | 7.0 (2.3) | 6.9 (2.7) |
低预测性-首字高频 | 0.2 (0.11) | 10 (11) | 1377 (1044) | 740 (767) | 7.1 (2.0) | 7.7 (2.5) |
表5实验2四种目标词汇的字频、笔画数、整词词频和语境预测性参数均值和标准差
目标词汇种类 | 语境预测性 | 整词词频 | 首字字频 | 尾字字频 | 首字笔画数 | 尾字笔画数 |
---|---|---|---|---|---|---|
高预测性-首字高频 | 76.1 (19.2) | 12 (12) | 1558 (1062) | 707 (727) | 7.2 (2.1) | 7.7 (2.1) |
低预测性-首字低频 | 0.2 (0.11) | 10 (11) | 51 (27) | 610 (841) | 7.9 (2.1) | 7.3 (2.4) |
高预测性-首字低频 | 78.7 (19.2) | 10 (11) | 38 (27) | 641 (884) | 7.0 (2.3) | 6.9 (2.7) |
低预测性-首字高频 | 0.2 (0.11) | 10 (11) | 1377 (1044) | 740 (767) | 7.1 (2.0) | 7.7 (2.5) |
表6实验2中包含4种目标词汇的框架句子举例
目标词汇种类 | 框架句子 |
---|---|
高预测性- 首字高频 | 哥哥要出远门, 妈妈一边帮他收拾行李一边叮嘱他注意安全。 |
低预测性- 首字低频 | 哥哥要出远门, 妈妈一边帮他收拾岩石一边叮嘱他注意安全。 |
高预测性- 首字低频 | 产科专家正在指导孕妇做好产前保健活动。 |
低预测性- 首字高频 | 产科专家正在指导经理做好产前保健活动。 |
表6实验2中包含4种目标词汇的框架句子举例
目标词汇种类 | 框架句子 |
---|---|
高预测性- 首字高频 | 哥哥要出远门, 妈妈一边帮他收拾行李一边叮嘱他注意安全。 |
低预测性- 首字低频 | 哥哥要出远门, 妈妈一边帮他收拾岩石一边叮嘱他注意安全。 |
高预测性- 首字低频 | 产科专家正在指导孕妇做好产前保健活动。 |
低预测性- 首字高频 | 产科专家正在指导经理做好产前保健活动。 |
表7实验2各条件下目标词汇上注视时间类指标和注视概率类指标的均值与标准误差
指标 | 高语境预测性 | 低语境预测性 | ||
---|---|---|---|---|
首字高频 | 首字低频 | 首字高频 | 首字低频 | |
首次注视时间 | 228 (2.27) | 224 (2.27) | 240 (2.27) | 244 (2.27) |
凝视时间 | 246 (3.40) | 247 (3.40) | 281 (3.40) | 281 (3.40) |
总注视时间 | 276 (7.70) | 278 (7.71) | 402 (7.71) | 399 (7.71) |
跳读概率 | 29.5 (0.9) | 25.1 (0.9) | 21.6 (0.9) | 20.8 (0.9) |
再注视概率 | 6.9 (0.7) | 9.1 (0.7) | 14.2 (0.7) | 13.5 (0.7) |
回视概率 | 10.3 (0.7) | 9.3 (0.7) | 18.8 (0.7) | 13.5 (0.7) |
表7实验2各条件下目标词汇上注视时间类指标和注视概率类指标的均值与标准误差
指标 | 高语境预测性 | 低语境预测性 | ||
---|---|---|---|---|
首字高频 | 首字低频 | 首字高频 | 首字低频 | |
首次注视时间 | 228 (2.27) | 224 (2.27) | 240 (2.27) | 244 (2.27) |
凝视时间 | 246 (3.40) | 247 (3.40) | 281 (3.40) | 281 (3.40) |
总注视时间 | 276 (7.70) | 278 (7.71) | 402 (7.71) | 399 (7.71) |
跳读概率 | 29.5 (0.9) | 25.1 (0.9) | 21.6 (0.9) | 20.8 (0.9) |
再注视概率 | 6.9 (0.7) | 9.1 (0.7) | 14.2 (0.7) | 13.5 (0.7) |
回视概率 | 10.3 (0.7) | 9.3 (0.7) | 18.8 (0.7) | 13.5 (0.7) |
表8实验2混合线性模型分析结果
变量 | 首次注视时间 | 凝视时间 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
b | SE | t | p | 95% CI | b | SE | t | p | 95% CI | |
Intercept | 2.33 | 0.01 | 443.52 | < 0.001 | [2.32, 2.34] | 2.39 | 0.01 | 352.54 | < 0.001 | [2.38, 2.40] |
首字字频 | -0.00 | 0.00 | -0.04 | 0.97 | - | 0.00 | 0.00 | 0.48 | 0.63 | - |
语境预测性 | 0.03 | 0.00 | 10.11 | < 0.001 | [0.02, 0.03] | 0.05 | 0.00 | 3.25 | 0.001 | [0.04, 0.06] |
首字字频×语境预测性 | 0.02 | 0.01 | 1.53 | 0.13 | - | 0.01 | 0.02 | 0.31 | 0.76 | - |
变量 | 总注视时间 | 跳读概率 | ||||||||
b | SE | t | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | 2.51 | 0.01 | 223.69 | < 0.001 | [2.38, 2.40] | -1.26 | 0.06 | -21.48 | < 0.001 | [-1.38, -1.15] |
首字字频 | -0.01 | 0.00 | -1.42 | 0.16 | - | -0.14 | 0.04 | -3.42 | < 0.001 | [-0.21, -0.06] |
语境预测性 | 0.11 | 0.00 | 27.75 | < 0.001 | [0.04, 0.06] | -0.35 | 0.04 | -8.87 | < 0.001 | [-0.43, -0.27] |
首字字频×语境预测性 | 0.01 | 0.04 | 0.34 | 0.74 | - | -0.19 | 0.18 | 1.06 | 0.29 | - |
变量 | 再注视概率 | 回视概率 | ||||||||
b | SE | z | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | -2.44 | 0.08 | -29.85 | < 0.001 | [-2.60, -2.28] | -2.37 | 0.10 | -23.80 | < 0.001 | [-2.56, -2.17] |
首字字频 | 0.13 | 0.06 | 2.36 | 0.02 | [0.02, 0.24] | -0.25 | 0.06 | -4.66 | < 0.001 | [-0.36, -0.15] |
语境预测性 | 0.67 | 0.06 | 12.25 | < 0.001 | [0.57, 0.78] | 0.71 | 0.06 | 13.00 | < 0.001 | [0.60, 0.82] |
首字字频×语境预测性 | -0.35 | 0.26 | -1.35 | 0.18 | - | -0.22 | 0.37 | -0.59 | 0.56 | - |
表8实验2混合线性模型分析结果
变量 | 首次注视时间 | 凝视时间 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
b | SE | t | p | 95% CI | b | SE | t | p | 95% CI | |
Intercept | 2.33 | 0.01 | 443.52 | < 0.001 | [2.32, 2.34] | 2.39 | 0.01 | 352.54 | < 0.001 | [2.38, 2.40] |
首字字频 | -0.00 | 0.00 | -0.04 | 0.97 | - | 0.00 | 0.00 | 0.48 | 0.63 | - |
语境预测性 | 0.03 | 0.00 | 10.11 | < 0.001 | [0.02, 0.03] | 0.05 | 0.00 | 3.25 | 0.001 | [0.04, 0.06] |
首字字频×语境预测性 | 0.02 | 0.01 | 1.53 | 0.13 | - | 0.01 | 0.02 | 0.31 | 0.76 | - |
变量 | 总注视时间 | 跳读概率 | ||||||||
b | SE | t | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | 2.51 | 0.01 | 223.69 | < 0.001 | [2.38, 2.40] | -1.26 | 0.06 | -21.48 | < 0.001 | [-1.38, -1.15] |
首字字频 | -0.01 | 0.00 | -1.42 | 0.16 | - | -0.14 | 0.04 | -3.42 | < 0.001 | [-0.21, -0.06] |
语境预测性 | 0.11 | 0.00 | 27.75 | < 0.001 | [0.04, 0.06] | -0.35 | 0.04 | -8.87 | < 0.001 | [-0.43, -0.27] |
首字字频×语境预测性 | 0.01 | 0.04 | 0.34 | 0.74 | - | -0.19 | 0.18 | 1.06 | 0.29 | - |
变量 | 再注视概率 | 回视概率 | ||||||||
b | SE | z | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | -2.44 | 0.08 | -29.85 | < 0.001 | [-2.60, -2.28] | -2.37 | 0.10 | -23.80 | < 0.001 | [-2.56, -2.17] |
首字字频 | 0.13 | 0.06 | 2.36 | 0.02 | [0.02, 0.24] | -0.25 | 0.06 | -4.66 | < 0.001 | [-0.36, -0.15] |
语境预测性 | 0.67 | 0.06 | 12.25 | < 0.001 | [0.57, 0.78] | 0.71 | 0.06 | 13.00 | < 0.001 | [0.60, 0.82] |
首字字频×语境预测性 | -0.35 | 0.26 | -1.35 | 0.18 | - | -0.22 | 0.37 | -0.59 | 0.56 | - |
表9实验3四种目标词汇的字频、笔画数, 整词词频和语境预测性参数均值和标准差
目标词汇种类 | 语境预测性 | 整词词频 | 首字字频 | 尾字字频 | 首字笔画数 | 尾字笔画数 |
---|---|---|---|---|---|---|
高预测性-尾字高频 | 83.7 (14.3) | 13 (11) | 471 (563) | 1123 (415) | 7.8 (1.9) | 8.1 (2.9) |
低预测性-尾字低频 | 5 (2.4) | 14 (19) | 597 (725) | 51 (28) | 6.9 (2.5) | 7.4 (2.3) |
高预测性-尾字低频 | 83.7 (152) | 15 (19) | 611 (841) | 47 (20) | 7.1 (2.5) | 7.8 (2.0) |
低预测性-尾字高频 | 1.3 (4.1) | 14 (24) | 535 (801) | 1115 (667) | 7.2 (2.5) | 7.3 (1.7) |
表9实验3四种目标词汇的字频、笔画数, 整词词频和语境预测性参数均值和标准差
目标词汇种类 | 语境预测性 | 整词词频 | 首字字频 | 尾字字频 | 首字笔画数 | 尾字笔画数 |
---|---|---|---|---|---|---|
高预测性-尾字高频 | 83.7 (14.3) | 13 (11) | 471 (563) | 1123 (415) | 7.8 (1.9) | 8.1 (2.9) |
低预测性-尾字低频 | 5 (2.4) | 14 (19) | 597 (725) | 51 (28) | 6.9 (2.5) | 7.4 (2.3) |
高预测性-尾字低频 | 83.7 (152) | 15 (19) | 611 (841) | 47 (20) | 7.1 (2.5) | 7.8 (2.0) |
低预测性-尾字高频 | 1.3 (4.1) | 14 (24) | 535 (801) | 1115 (667) | 7.2 (2.5) | 7.3 (1.7) |
表10实验3中包含4种目标词汇的框架句子举例
目标词汇种类 | 框架句子 |
---|---|
高预测性-尾字高频 | 演员在拍戏之前都要认真地阅读剧本以便把握剧情细节。 |
低预测性-尾字低频 | 演员在拍戏之前都要认真地阅读画册以便把握剧情细节。 |
高预测性-尾字低频 | 小红没有及时向房东支付房租就被赶出了房间。 |
低预测性-尾字高频 | 小红没有及时向房东支付现金就被赶出了房间。 |
表10实验3中包含4种目标词汇的框架句子举例
目标词汇种类 | 框架句子 |
---|---|
高预测性-尾字高频 | 演员在拍戏之前都要认真地阅读剧本以便把握剧情细节。 |
低预测性-尾字低频 | 演员在拍戏之前都要认真地阅读画册以便把握剧情细节。 |
高预测性-尾字低频 | 小红没有及时向房东支付房租就被赶出了房间。 |
低预测性-尾字高频 | 小红没有及时向房东支付现金就被赶出了房间。 |
表11实验3各条件下目标词汇上注视时间类指标和注视概率类指标的均值与标准误差
指标 | 高预测性 | 低预测性 | ||
---|---|---|---|---|
尾字高频 | 尾字低频 | 尾字高频 | 尾字低频 | |
首次注视时间 | 225 (2.36) | 222 (2.36) | 232 (2.36) | 241 (2.36) |
凝视时间 | 247 (3.46) | 238 (3.46) | 257 (3.46) | 278 (3.46) |
总注视时间 | 282 (8.42) | 256 (8.42) | 361 (8.42) | 425 (8.42) |
跳读概率 | 29.8 (1.0) | 30.1 (1.0) | 27.0 (1.0) | 24.3 (1.0) |
再注视概率 | 8.0 (0.7) | 6.1 (0.7) | 8.7 (0.7) | 13.2 (0.7) |
回视概率 | 11.2 (0.7) | 9.2 (0.7) | 15.5 (0.7) | 16.7 (0.7) |
表11实验3各条件下目标词汇上注视时间类指标和注视概率类指标的均值与标准误差
指标 | 高预测性 | 低预测性 | ||
---|---|---|---|---|
尾字高频 | 尾字低频 | 尾字高频 | 尾字低频 | |
首次注视时间 | 225 (2.36) | 222 (2.36) | 232 (2.36) | 241 (2.36) |
凝视时间 | 247 (3.46) | 238 (3.46) | 257 (3.46) | 278 (3.46) |
总注视时间 | 282 (8.42) | 256 (8.42) | 361 (8.42) | 425 (8.42) |
跳读概率 | 29.8 (1.0) | 30.1 (1.0) | 27.0 (1.0) | 24.3 (1.0) |
再注视概率 | 8.0 (0.7) | 6.1 (0.7) | 8.7 (0.7) | 13.2 (0.7) |
回视概率 | 11.2 (0.7) | 9.2 (0.7) | 15.5 (0.7) | 16.7 (0.7) |
表12实验3混合线性模型分析结果
变量 | 首次注视时间 | 凝视时间 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
b | SE | t | p | 95% CI | b | SE | t | p | 95% CI | |
Intercept | 2.33 | 0.01 | 400.65 | < 0.001 | [2.32, 2.34] | 2.39 | 0.01 | 313.49 | < 0.001 | [2.37, 2.40] |
尾字字频 | 0.01 | 0.00 | 1.46 | 0.14 | - | 0.01 | 0.00 | 1.82 | 0.07 | [0.00, 0.01] |
语境预测性 | 0.02 | 0.0 | 6.59 | < 0.001 | [0.02, 0.03] | 0.03 | 0.00 | 9.25 | < 0.001 | [0.03, 0.04] |
尾字字频×语境预测性 | 0.03 | 0.01 | 1.99 | 0.05 | [0.00, 0.05] | 0.05 | 0.02 | 2.38 | 0.02 | [0.01, 0.09] |
变量 | 总注视时间 | 跳读概率 | ||||||||
b | SE | t | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | 2.50 | 0.01 | 212.21 | < 0.001 | [2.37, 2.40] | -1.06 | 0.07 | -16.15 | < 0.001 | [-1.19, -0.94] |
尾字字频 | 0.01 | 0.00 | 3.07 | 0.002 | [0.00, 0.01] | -0.07 | 0.04 | -1.73 | 0.08 | [-0.15, -0.01] |
语境预测性 | 0.11 | 0.00 | 24.14 | < 0.001 | [0.03, 0.04] | -0.24 | 0.04 | -5.68 | < 0.001 | [-0.32, -0.16] |
尾字字频×语境预测性 | 0.08 | 0.04 | 2.08 | 0.05 | [0.01, 0.09] | -0.16 | 0.22 | -0.73 | 0.47 | - |
变量 | 再注视概率 | 回视概率 | ||||||||
b | SE | z | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | -2.94 | 0.10 | -28.14 | < 0.001 | [-3.14, -2.73] | -2.39 | 0.11 | -21.04 | < 0.001 | [-2.61, -2.17] |
尾字字频 | 0.09 | 0.07 | 1.31 | 0.19 | - | -0.05 | 0.06 | -0.75 | 0.46 | - |
语境预测性 | 0.50 | 0.07 | 7.26 | < 0.001 | [0.37, 0.63] | 0.68 | 0.06 | 11.37 | < 0.001 | [0.57, 0.80] |
尾字字频×语境预测性 | 0.80 | 0.33 | 2.41 | 0.02 | [0.15 1.48] | 0.40 | 0.43 | 0.93 | 0.35 | - |
表12实验3混合线性模型分析结果
变量 | 首次注视时间 | 凝视时间 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
b | SE | t | p | 95% CI | b | SE | t | p | 95% CI | |
Intercept | 2.33 | 0.01 | 400.65 | < 0.001 | [2.32, 2.34] | 2.39 | 0.01 | 313.49 | < 0.001 | [2.37, 2.40] |
尾字字频 | 0.01 | 0.00 | 1.46 | 0.14 | - | 0.01 | 0.00 | 1.82 | 0.07 | [0.00, 0.01] |
语境预测性 | 0.02 | 0.0 | 6.59 | < 0.001 | [0.02, 0.03] | 0.03 | 0.00 | 9.25 | < 0.001 | [0.03, 0.04] |
尾字字频×语境预测性 | 0.03 | 0.01 | 1.99 | 0.05 | [0.00, 0.05] | 0.05 | 0.02 | 2.38 | 0.02 | [0.01, 0.09] |
变量 | 总注视时间 | 跳读概率 | ||||||||
b | SE | t | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | 2.50 | 0.01 | 212.21 | < 0.001 | [2.37, 2.40] | -1.06 | 0.07 | -16.15 | < 0.001 | [-1.19, -0.94] |
尾字字频 | 0.01 | 0.00 | 3.07 | 0.002 | [0.00, 0.01] | -0.07 | 0.04 | -1.73 | 0.08 | [-0.15, -0.01] |
语境预测性 | 0.11 | 0.00 | 24.14 | < 0.001 | [0.03, 0.04] | -0.24 | 0.04 | -5.68 | < 0.001 | [-0.32, -0.16] |
尾字字频×语境预测性 | 0.08 | 0.04 | 2.08 | 0.05 | [0.01, 0.09] | -0.16 | 0.22 | -0.73 | 0.47 | - |
变量 | 再注视概率 | 回视概率 | ||||||||
b | SE | z | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | -2.94 | 0.10 | -28.14 | < 0.001 | [-3.14, -2.73] | -2.39 | 0.11 | -21.04 | < 0.001 | [-2.61, -2.17] |
尾字字频 | 0.09 | 0.07 | 1.31 | 0.19 | - | -0.05 | 0.06 | -0.75 | 0.46 | - |
语境预测性 | 0.50 | 0.07 | 7.26 | < 0.001 | [0.37, 0.63] | 0.68 | 0.06 | 11.37 | < 0.001 | [0.57, 0.80] |
尾字字频×语境预测性 | 0.80 | 0.33 | 2.41 | 0.02 | [0.15 1.48] | 0.40 | 0.43 | 0.93 | 0.35 | - |
参考文献 83
[1] | Altarriba, J., Kroll, J. F., Sholl, A., & Rayner, K. (1996). The influence of lexical and conceptual constraints on reading mixed language sentences: Evidence from eye fixations and naming times. Memory & Cognition, 24, 477-492. doi: 10.3758/bf03200936URLpmid: 8757496 |
[2] | Altman, D. G., & Bland, J. M. (1995). Absence of evidence is not evidence of absence. British Medical Journal, 311, 485-485. doi: 10.1136/bmj.311.7003.485URLpmid: 7647644 |
[3] | Altmann, G. T. M., & Kamide, Y. (1999). Incremental interpretation at verbs: Restricting the domain of subsequent reference. Cognition, 73(3), 247-264. doi: 10.1016/s0010-0277(99)00059-1URLpmid: 10585516 |
[4] | Ashby, J., Rayner, K., & Clifton, C. (2005). Eye movements of highly skilled and average readers: Differential effects of frequency and predictability. The Quarterly Journal of Experimental Psychology, 58(6), 1065-1086. doi: 10.1080/02724980443000476URLpmid: 16194948 |
[5] | Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390-412. doi: 10.1016/j.jml.2007.12.005URL |
[6] | Bai, X., Yan, G., Liversedge, S. P., Zang, C., & Rayner, K. (2008). Reading spaced and unspaced Chinese text: Evidence from eye movements. Journal of Experimental Psychology: Human Perception and Performance, 34(5), 1277-1287. doi: 10.1037/0096-1523.34.5.1277URLpmid: 18823210 |
[7] | Balota, D. A., Pollatsek, A., & Rayner, K. (1985). The interaction of contextual constraints and parafoveal visual information in reading. Cognitive Psychology, 17(3), 364-390. doi: 10.1016/0010-0285(85)90013-1URLpmid: 4053565 |
[8] | Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255-278. doi: 10.1016/j.jml.2012.11.001URL |
[9] | Bates, D., M?chler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48. |
[10] | Bonhage, C. E., Mueller, J. L., Friederici, A. D., & Fiebach. C. J. (2015). Combined eye tracking and fMRI reveals neural basis of linguistic predictions during sentence comprehension. Cortex, 68, 33-47. doi: 10.1016/j.cortex.2015.04.011URLpmid: 26003489 |
[11] | Cervero, F., & Laird, J. M. (2000). Absence of evidence is not evidence of absence (again). Pain, 84(1), 114-115. doi: 10.1016/s0304-3959(99)00180-3URLpmid: 10681244 |
[12] | Chen, C., Liu, Z., Su, Y., & Cheng, Y. (2018). The prediction effects for skill and less-skill deaf readers in Chinese reading: Evidence from eye movement. Psychological Development and Education, 34(6), 692-699. |
[ 陈朝阳, 刘志方, 苏永强, 程亚华. (2018). 高低阅读技能聋生词汇加工的语境预测性效应特点:眼动证据. 心理发展与教育, 34(6), 692-699.] | |
[13] | Clifton, C., Ferreira, F., Henderson, J. M., Inhoff, A. W., Liversedge, S. P., Reichle, E. D., & Schotter, E. R. (2016). Eye movements in reading and information processing: Keith Rayner’s 40 year legacy. Journal of Memory and Language, 86(1), 1-19. doi: 10.1016/j.jml.2015.07.004URL |
[14] | Dambacher, M., Kliegl, R., Hofmann, M., & Jacobs, A. M. (2006). Frequency and predictability effects on event related potentials during reading. Brain Research, 1084(1), 89-103. doi: 10.1016/j.brainres.2006.02.010URLpmid: 16545344 |
[15] | Ehrlich, S. F., & Rayner, K.. (1981). Contextual effects on word perception and eye movements during reading. Journal of Verbal Learning and Verbal Behavior, 20(6), 641-655. doi: 10.1016/S0022-5371(81)90220-6URL |
[16] | Engbert, R., Nuthmann, A., Richter, E. M., & Kliegl, R. (2005). Swift: A dynamical model of saccade generation during reading. Psychological Review, 112(4), 777-813. doi: 10.1037/0033-295X.112.4.777URLpmid: 16262468 |
[17] | Fischler, I. (1985). Word recognition, use of context, and reading skill among deaf college students. Reading Research Quarterly, 20(2), 203-218. doi: 10.2307/747756URL |
[18] | Fodor, J. A. (1983). The Modularity of Mind. Cambridge, MA: MIT Press. |
[19] | Forster, K. I. (1979). Levels of processing and the structure of the language processor. In W. E. Cooper & E. Walker (Eds.), Sentence processing: Psycholinguistic studies to Merrill Garrett (pp.27-85). Hillsdale, NJ: Erbaum. |
[20] | Forster, K. I. (1981). Priming and the effects of sentence and lexical contexts on naming time-evidence for autonomous lexical processing. Quarterly Journal of Experimental Psychology. 33(4), 465-495. |
[21] | Gollan, T., Slattery, T. J., Goldenberg, D., van Assche, E., Duyck, W., & Rayner, K. (2011). Frequency drives lexical access in reading but not in speaking: The frequency-lag hypothesis. Journal of Experimental Psychology: General, 140(2), 186-209. doi: 10.1037/a0022256URL |
[22] | Gu, J, & Li, X. (2015). The effects of character transposition within and across words in Chinese reading. Attention, Perception,and Psychophysics, 77(7), 272-281. doi: 10.3758/s13414-014-0749-5URL |
[23] | Hand, C. J., Miellet, S., O’Donnell, P. J., & Sereno, S. C. (2010). The frequency-predictability interaction in reading: It depends where you’re coming from. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1294-1313. doi: 10.1037/a0020363URLpmid: 20854004 |
[24] | Hu, C., Kong, X., Wagenmakers, E. J., Ly, A., & Peng, K. (2018). The Bayes factor and its implementation in JASP: A practical primer. Advances in Psychological Science, 26(6), 951-965. doi: 10.3724/SP.J.1042.2018.00951URL |
[ 胡传鹏, 孔祥祯, Wagenmakers, E. J., Ly, A., 彭凯平. (2018). 贝叶斯因子及其在JASP中的实现. 心理科学进展, 26(6), 951-965.] | |
[25] | Huck, A., Thompson, R. L., Cruice, M., & Marshall, J. (2017). Effects of word frequency and contextual predictability on sentence reading in aphasia: An eye movement analysis. Aphasiology, 31(11), 1307-1332. doi: 10.1080/02687038.2017.1278741URL |
[26] | Hudson, P. T. W., & Bergman, M W. (1985). Lexical knowledge in word recognition: Word length and word frequency in naming and lexical decision tasks. Journal of Memory and Language, 24(1), 46-58. doi: 10.1016/0749-596X(85)90015-4URL |
[27] | Inhoff, A. W. (1984). Two stages of word processing during eye fixations in the reading of prose. Journal of Verbal Learning and Verbal Behavior, 23(5), 612-624. doi: 10.1016/S0022-5371(84)90382-7URL |
[28] | Inhoff, A. W., & Liu, W. (1998). The perceptual span and oculomotor activity during the reading of Chinese sentences. Journal of Experimental Psychology: Human Perception and Performance, 24(1), 20-34. doi: 10.1037//0096-1523.24.1.20URLpmid: 9483822 |
[29] | Kliegl, R., Grabner, E., Rolfs, M., & Engbert, R. (2004). Length, frequency, and predictability effects of words on eye movements in reading. European Journal of Cognitive Psychology, 16(1-2), 262-284. doi: 10.1080/09541440340000213URL |
[30] | Kretzschmar, F., Schlesewsky, M., & Staub, A. (2015). Dissociating word frequency and predictability effects in reading: Evidence from coregistration of eye movements and EEG. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(6), 1648-1662. doi: 10.1037/xlm0000128URLpmid: 26010829 |
[31] | Lee, C. Y., Liu, Y. N., & Tsai, J. L. (2012). The time course of contextual effects on visual word recognition. Frontiers in Psychology, 3. 285. doi: 10.3389/fpsyg.2012.00285URLpmid: 22934087 |
[32] | Li, X., & Pollatsek, A. (2011). Word knowledge influences character perception. Psychonomic Bulletin & Review, 18(5), 833-839. doi: 10.3758/s13423-011-0115-8URLpmid: 21660620 |
[33] | Li, X., Bicknell, K., Liu, P., Wei, W., & Rayner, K. (2014). Reading is fundamentally similar across disparate writing systems: A systematic characterization of how words and characters influence eye movements in Chinese reading. Journal of Experimental Psychology: General, 143(2), 895-913. doi: 10.1037/a0033580URL |
[34] | Li, X., Liu, P. P., & Ma, G. J. (2011). Advances in cognitive mechanisms of word segmentation during Chinese reading. Advances in Psychological Science, 19(4), 459-470. |
[ 李兴珊, 刘萍萍, 马国杰. (2011). 中文阅读中词切分的认知机理述评. 心理科学进展, 19(4), 459-470.] | |
[35] | Li, X., Rayner, K., & Cave, K. P. (2009). On the segmentation of Chinese words during reading. Cognitive Psychology, 58(4), 525-552. doi: 10.1016/j.cogpsych.2009.02.003URL |
[36] | Li, X. S., & Shen, W. (2013). Joint effect of insertion of spaces and word length in saccade target selection in Chinese reading. Journal of Research in Reading, 36(S1), S64-S77. doi: 10.1111/j.1467-9817.2012.01552.xURL |
[37] | Liang, F., Blythe, H. I., Zang, C., Bai, X., Yan, G., & Liversedge, S. P. (2015). Positional character frequency and word spacing facilitate the acquisition of novel words during Chinese children's reading. Journal of Cognitive Psychology, 27(5), 594-608. doi: 10.1080/20445911.2014.1000918URL |
[38] | Lin, N., Angele, B., Hua, H., Shen, W., Zhou, J., & Li, X. (2018). Skipping of Chinese characters does not rely on word-based processing. Attention, Perception, & Psychophysics, 80(2), 600-607. |
[39] | Liu, P. P., & Li, X S. (2012). Inserting spaces before and after words affects word processing differently in Chinese: Evidence from eye movements. British Journal of Psychology, 105(1), 57-68. doi: 10.1111/bjop.12013URLpmid: 24387096 |
[40] | Liu, Y., Guo, S., Yu, L., & Reichle, E. D. (2018). Word predictability affects saccade length in Chinese reading: An evaluation of the dynamic-adjustment model. Psychonomic Bulletin & Review. 25(5), 1891-1899. doi: 10.3758/s13423-017-1357-xURLpmid: 28762028 |
[41] | Liu, Z., Zhang, Z., Pan, Y., Tong, W., & Su, H. (2017). The characteristics of visual word encoding in preview and fixation frames during Chinese reading: Evidences from disappearing text. Acta Psychologica Sinica, 49(7), 853-865. doi: 10.3724/SP.J.1041.2017.00853URL |
[ 刘志方, 张智君, 潘运, 仝文, 苏衡. (2017). 中文阅读中预视阶段和注视阶段内词汇视觉编码的过程特点: 来自消失文本的证据. 心理学报, 49(7), 853-865.] | |
[42] | Lu, Z. L., Bai, X. J., & Yan, G. L. (2008). Eye movement study on the interaction between word frequency and predictability in the recognition of Chinese words. Psychological Research, 1(4), 29-33. |
[ 卢张龙, 白学军, 闫国利. (2008). 汉语词汇识别中词频和可预测性交互作用的眼动研究. 心理研究, 1(4), 29-33.] | |
[43] | Ma, G., & Li, X. (2015). How character complexity modulates eye movement control in Chinese reading. Reading & Writing, 28(6), 747-761. |
[44] | Ma, G., Li, X., & Rayner, K. (2015). Readers extract character frequency information from nonfixated-target word at long pretarget fixations during Chinese reading. Journal of Experimental Psychology: Human Perception and Performance, 41(5), 1409-1419. doi: 10.1037/xhp0000072URLpmid: 26168144 |
[45] | McClelland, J. L. (1987). The case for interactionism in language processing. Psychology of Reading, 1(12), 3-36. doi: 10.1080/0270271790010102URL |
[46] | McClelland, J. L., & Rumelhart, D E. (1981). An interactive activation model of context effects in letter perception, part i: An account of basic findings. Readings in Cognitive Science, 88(5), 580-596. |
[47] | Miellet, S., Sparrow, L., & Sereno, S. C. (2007). Word frequency and predictability effects in reading French: An evaluation of the E-Z reader model. Psychonomic Bulletin & Review, 14(4), 762-769. doi: 10.3758/bf03196834URLpmid: 17972746 |
[48] | Monsell, S., Doyle, M. C., & Haggard, P. N. (1989). Effects of frequency on visual word recognition tasks: Where are they?. Journal of Experimental Psychology: General, 118(1), 43-71. doi: 10.1037/0096-3445.118.1.43URL |
[49] | Morey, R. D., Rouder, J. N., Jamil, T., Urbanek, S., Forner, K., & Ly, A. (2018). BayesFactor: Computation of Bayes factors for common designs. Retrieved from https:// CRAN.R-project.org/package=BayesFactor. |
[50] | Morton, J. (1969). Interaction of information in word recognition. Psychological Review, 76(2), 165-178. doi: 10.1037/h0027366URL |
[51] | Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422. doi: 10.1037/0033-2909.124.3.372URLpmid: 9849112 |
[52] | Rayner, K. (2009). The Thirty-Fifth Sir Frederick Bartlett Lecture: Eye movements and attention during reading, scene perception, and visual search. Quarterly Journal of Experimental Psychology, 62(8), 1457-1506. doi: 10.1080/17470210902816461URL |
[53] | Rayner, K., & Duffy, S. A. (1986). Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. Memory and Cognition, 14(3), 191-201. doi: 10.3758/bf03197692URLpmid: 3736392 |
[54] | Rayner, K., & Well, A. D. (1996). Effects of contextual constraint on eye movements in reading: A further examination. Psychonomic Bulletin & Review, 3(4), 504-509. doi: 10.3758/BF03214555URLpmid: 24213985 |
[55] | Rayner, K., Ashby, J., Pollatsek, A., & Reichle, E. D. (2004). The effects of frequency and predictability on eye fixations in reading: Implications for the E-Z Reader model. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 720-732. doi: 10.1037/0096-1523.30.4.720URLpmid: 15301620 |
[56] | Rayner, K., Binder, K. S., Ashby, J., & Pollatsek, A. (2001). Eye movement control in reading: Word predictability has little influence on initial landing positions in words. Vision Research, 41(7), 943-954. doi: 10.1016/s0042-6989(00)00310-2URLpmid: 11248279 |
[57] | Rayner, K., Li, X., Juhasz, B. J., & Yan, G. (2005). The effect of word predictability on the eye movements of Chinese readers. Psychonomic Bulletin & Review, 12(6), 1089-1093 doi: 10.3758/bf03206448URLpmid: 16615333 |
[58] | Rayner, K., Reichle, E. D., Stroud, M. J., Williams, C. C., & Pollatsek, A. (2006). The effect of word frequency, word predictability, and font difficulty on the eye movements of young and older readers. Psychology and Aging, 21(3), 448-465. doi: 10.1037/0882-7974.21.3.448URLpmid: 16953709 |
[59] | Reichle, E. D., Pollatsek, A., Fisher, D., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105(1), 125-157. doi: 10.1037/0033-295x.105.1.125URLpmid: 9450374 |
[60] | Reichle, E. D., Rayner, K., & Pollatsek, A. (2003). The E-Z reader model of eye-movement control in reading: Comparisons to other models. Behavioral and Brain Sciences, 26(4), 445-526. doi: 10.1017/s0140525x03000104URLpmid: 15067951 |
[61] | Reilly, R. G., & Radach, R. (2006). Some empirical tests of an interactive activation model of eye movement control in reading. Cognitive Systems Research, 7(1), 34-55. doi: 10.1016/j.cogsys.2005.07.006URL |
[62] | Reilly, R., & Radach, R. (2012). The dynamics of reading in non-Roman writing systems: A reading and writing special issue. Reading & Writing, 25(5), 935-950. |
[63] | Richter, E. M., Engbert, R., & Kliegl, R. (2006). Current advances in SWIFT. Cognitive Systems Research, 7(1), 23-33. doi: 10.1016/j.cogsys.2005.07.003URL |
[64] | Rouder, J. N., & Morey, R D. (2012). Default Bayes factors for model selection in regression. Multivariate Behavioral Research, 47(6), 877-903. doi: 10.1080/00273171.2012.734737URL |
[65] | Rumelhart, D. E., & McClelland, J L. (1982). An interactive activation model of context effects in letter perception: Part ii. The contextual enhancement effect and some tests and extensions of the model. Psychological Review, 89(1), 60-94. URLpmid: 7058229 |
[66] | Schotter, E. R., Angele, B., & Rayner, K. (2012). Parafoveal processing in reading. Attention, Perception & Psychophysics, 74(1), 5-35. doi: 10.3758/s13414-011-0219-2URLpmid: 22042596 |
[67] | Schotter, E. R., Lee, M., Reiderman, M., & Rayner, K. (2015). The effect of contextual constraint on parafoveal processing in reading. Journal of Memory and Language, 83, 118-139. doi: 10.1016/j.jml.2015.04.005URLpmid: 26257469 |
[68] | Schustack, M. W., Ehrlich, S. F., & Rayner, K. (1987). Local and global sources of contextual facilitation in reading. Journal of Memory and Language, 26(3), 322-340. doi: 10.1016/0749-596X(87)90117-3URL |
[69] | Sereno, S. C., & Rayner, K. (2000). The when and where of reading in the brain. Brain and Cognition, 42(1), 78-81. doi: 10.1006/brcg.1999.1167URLpmid: 10739604 |
[70] | Sereno, S. C., & Rayner, K. (2003). Measuring word recognition in reading: Eye movements and event-related potentials. Trends in Cognitive Sciences, 7(11), 489-493. doi: 10.1016/j.tics.2003.09.010URLpmid: 14585445 |
[71] | Shen, W., & Li, X. S. (2012). The uniqueness of word superiority effect in Chinese reading. Chinese Science Bulletin, 57(35), 3414-3420. |
[ 申薇, 李兴珊. (2012). 中文阅读中词优效应的特异性. 科学通报, 57(35), 3414-3420.] | |
[72] | Shen, W., Li, X., & Pollatsek, A. (2018). The processing of Chinese compound words with ambiguous morphemes in sentence context. The Quarterly Journal of Experimental Psychology, 71(1), 131-139. doi: 10.1080/17470218.2016.1270975URL |
[73] | Slattery, T. J., Staub, A., & Rayner, K. (2012). Saccade launch site as a predictor of fixation durations in reading: Comments on Hand, Miellet, O’Donnell, and Sereno (2010). Journal of Experimental Psychology: Human Perception and Performance, 38(1), 251-261. doi: 10.1037/a0025980URLpmid: 22082213 |
[74] | Stanovich, K. E. (1986). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Reading Research Quarterly, 21(4), 360-407. doi: 10.1598/RRQ.21.4.1URL |
[75] | Stanovich, K. E., & West, R F. (1981). The effect of sentence context on ongoing word recognition: Tests of a two-process theory. Journal of Experimental Psychology: Human Perception and Performance, 7(3), 658-672. doi: 10.1037/0096-1523.7.3.658URL |
[76] | Stanovich, K. E., & West, R F. (1983). On priming by a sentence context. Journal of Experimental Psychology: General, 112(1), 1-36. doi: 10.1037/0096-3445.112.1.1URL |
[77] | Su, H., Liu, Z., & Cao, L. (2016). The effects of word frequency and word predictability in preview and their implications for word segmentation in Chinese reading: Evidence from eye movements. Acta Psychologica Sinica, 48(6), 625-636. doi: 10.3724/SP.J.1041.2016.00625URL |
[ 苏衡, 刘志方, 曹立人. (2016). 中文阅读预视加工中的词频和预测性效应及其对词切分的启示:基于眼动的证据. 心理学报, 48(6), 625-636.] | |
[78] | Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403-409. doi: 10.1016/j.tics.2009.06.003URL |
[79] | Wagenmakers, E. J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., … Morey, R. D. (2017). Bayesian inference for psychology. part ii: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 1-19. doi: 10.3758/s13423-018-1443-8URLpmid: 29450790 |
[80] | White, S. J., Rayner, K., & Liversedge, S. P. (2005). The influence of parafoveal word length and contextual constraint on fixation durations and word skipping in reading. Psychonomic Bulletin & Review, 12(3), 466-471. doi: 10.3758/bf03193789URLpmid: 16235630 |
[81] | Yan, G., Tian, H., Bai, X., & Rayner, K. (2006). The effect of word and character frequency on the eye movements of Chinese readers. British Journal of Psychology, 97(2), 259-268. doi: 10.1348/000712605X70066URL |
[82] | Yao, P., & Li, X. (2019, October). How does predictability affect word processing in real time sentence processing. Paper presented at the meeting of The 22nd National Academic Congress of Psychology, Hangzhou, China. |
[ 药盼盼, 李兴珊. (2019, 10月). 可预测性促进词汇加工机制的探究. 第二十二届全国心理学学术会议摘要, 杭州, 浙江] | |
[83] | Yen, M. H., Radach, R., Tzeng, O. J. L., & Tsai, J. L. (2012). Usage of statistical cues for word boundary in reading Chinese sentences. Reading & Writing, 25(5), 1007-1029. |
相关文章 15
[1] | 吴三美, 田良苏, 陈家侨, 陈广耀, 王敬欣. 中文阅读中无关言语效应的认知机制探究:眼动证据[J]. 心理学报, 2021, 53(7): 729-745. |
[2] | 杨帆, 隋雪, 李雨桐. 中文阅读中长距离回视引导机制的眼动研究[J]. 心理学报, 2020, 52(8): 921-932. |
[3] | 张慢慢, 臧传丽, 徐宇峰, 白学军, 闫国利. 快速与慢速读者的中央凹加工对副中央凹预视的影响[J]. 心理学报, 2020, 52(8): 933-945. |
[4] | 高晓雷, 李晓伟, 孙敏, 白学军, 高蕾. 藏语阅读中中央凹词频效应及对副中央凹预视效应的影响[J]. 心理学报, 2020, 52(10): 1143-1155. |
[5] | 梁菲菲, 马杰, 李馨, 连坤予, 谭珂, 白学军. 发展性阅读障碍儿童阅读中的眼跳定位缺陷:基于新词学习的实验证据[J]. 心理学报, 2019, 51(7): 805-815. |
[6] | 白学军, 马杰, 李馨, 连坤予, 谭珂, 杨宇, 梁菲菲. 发展性阅读障碍儿童的新词习得及其改善[J]. 心理学报, 2019, 51(4): 471-483. |
[7] | 周蕾, 李爱梅, 张磊, 李纾, 梁竹苑. 风险决策和跨期决策的过程比较:以确定效应和即刻效应为例[J]. 心理学报, 2019, 51(3): 337-352. |
[8] | 马利军, 马云霄, 何晓清, 刘海涛, 张静宇. 相对熟悉度和同音线索在谐音型歇后语理解中的作用[J]. 心理学报, 2019, 51(12): 1306-1317. |
[9] | 刘璐, 闫国利. 聋人阅读中的副中央凹视觉注意增强效应——来自消失文本的证据[J]. 心理学报, 2018, 50(7): 715-726. |
[10] | 徐迩嘉, 隋雪. 身份信息与位置信息的加工进程及语境预测性的影响 *[J]. 心理学报, 2018, 50(6): 606-621. |
[11] | 李宝珠, 魏少木. 广告诉求形式对产品反馈的影响作用: 基于眼动的证据[J]. 心理学报, 2018, 50(1): 69-81. |
[12] | 刘志方, 张智君, 潘运, 仝文, 苏衡. 中文阅读中预视阶段和注视阶段内词汇视觉编码 的过程特点:来自消失文本的证据[J]. 心理学报, 2017, 49(7): 853-865. |
[13] | 白学军;高晓雷;高蕾;王永胜. 藏语阅读知觉广度的眼动研究[J]. 心理学报, 2017, 49(5): 569-576. |
[14] | 梁菲菲;王永胜;杨文;白学军. 阅读水平调节儿童阅读眼动注视模式的发展:基于9~11岁儿童的证据[J]. 心理学报, 2017, 49(4): 450-459. |
[15] | 孙俊才; 石荣. 哭泣表情面孔的注意偏向:眼动的证据[J]. 心理学报, 2017, 49(2): 155-163. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4816