删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

θ频段(4~8 Hz)的活动反映了汉语口语产生中音节信息的加工

本站小编 Free考研考试/2022-01-01

蒋宇宸, 蔡笑, 张清芳()
中国人民大学心理学系, 北京 100872
收稿日期:2019-10-23出版日期:2020-10-25发布日期:2020-08-24
通讯作者:张清芳E-mail:qingfang.zhang@ruc.edu.cn

基金资助:* 北京市社科基金重点项目(16YYA006);中国人民大学预研委托(团队基金)人才培育类项目(18XNLG28)

Theta band (4~8 Hz) oscillations reflect syllables processing in Chinese spoken word production

JIANG Yuchen, CAI Xiao, ZHANG Qingfang()
Department of Psychology, Renmin University of China, Beijing 100872, China
Received:2019-10-23Online:2020-10-25Published:2020-08-24
Contact:ZHANG Qingfang E-mail:qingfang.zhang@ruc.edu.cn






摘要/Abstract


摘要: 大脑的神经振荡往往反映了人类的各种认知活动。语言理解的研究发现大脑θ频段的活动与音节的加工密切相关, 但目前尚未有研究者探究语言产生过程中大脑特定频段活动与音节加工的联系。我们通过EEG时频分析技术, 采用掩蔽启动范式, 考察了23名健康被试在图片命名过程中θ频段的活动与音节加工过程的关系。行为结果发现, 当启动词和目标图名称之间存在音节相关时, 个体的命名反应时快于音节无关的条件, 而音素相关条件的命名反应时慢于音素无关条件。时频结果发现, 在刺激出现后的270~460 ms, 音节相关条件下个体θ频段神经振荡的能量显著低于音节无关条件, 音素相关与音素无关之间无显著差异。综上, 我们认为汉语口语产生中大脑θ频段的活动反映了对音节的加工, 从神经振荡指标上为音节是汉语口语词汇产生中音韵编码的单元提供了证据。



图1掩蔽启动范式实验流程
图1掩蔽启动范式实验流程



图2不同条件下命名反应时 注:误差棒为95% CI, * p < 0.05, n.s.表示无显著差异
图2不同条件下命名反应时 注:误差棒为95% CI, * p < 0.05, n.s.表示无显著差异


表1以相关条件、相关类型、重复次数以及兴趣区为自变量θ能量活动在0~600 ms时间窗内的方差分析
变异来源 0~100 ms 100~200 ms 200~300 ms 300~400 ms 400~500 ms 500~600 ms
F ?p2 F ?p2 F ?p2 F ?p2 F ?p2 F ?p2
相关类型(1, 21) 8.08* 0.28 11.03** 0.35 5.18* 0.20 n.s. n.s. n.s.
相关条件(1, 21) n.s. n.s. n.s. n.s. n.s. n.s.
重复次数(1, 21) n.s. n.s n.s. n.s. n.s. n.s.
相关类型×相关条件(1, 21) n.s. n.s n.s. 5.13* 0.20 6.41* 0.23 6.00* 0.22
相关类型×相关条件×重复次数
(1, 21)
n.s. n.s. n.s. n.s. n.s. n.s.
相关条件×相关类型×重复次数×
兴趣区(5, 105)
n.s. n.s. n.s. n.s. n.s. n.s.

表1以相关条件、相关类型、重复次数以及兴趣区为自变量θ能量活动在0~600 ms时间窗内的方差分析
变异来源 0~100 ms 100~200 ms 200~300 ms 300~400 ms 400~500 ms 500~600 ms
F ?p2 F ?p2 F ?p2 F ?p2 F ?p2 F ?p2
相关类型(1, 21) 8.08* 0.28 11.03** 0.35 5.18* 0.20 n.s. n.s. n.s.
相关条件(1, 21) n.s. n.s. n.s. n.s. n.s. n.s.
重复次数(1, 21) n.s. n.s n.s. n.s. n.s. n.s.
相关类型×相关条件(1, 21) n.s. n.s n.s. 5.13* 0.20 6.41* 0.23 6.00* 0.22
相关类型×相关条件×重复次数
(1, 21)
n.s. n.s. n.s. n.s. n.s. n.s.
相关条件×相关类型×重复次数×
兴趣区(5, 105)
n.s. n.s. n.s. n.s. n.s. n.s.


表20~600 ms之间各频段能量活动的音节效应与音素效应

表20~600 ms之间各频段能量活动的音节效应与音素效应



图3aFC4点音节相关和无关条件的事件相关频谱扰动 注:虚线代表图片出现的时间, 黑色方框表示条件之间差异显著, p < 0.05, 经簇水平校正
图3aFC4点音节相关和无关条件的事件相关频谱扰动 注:虚线代表图片出现的时间, 黑色方框表示条件之间差异显著, p < 0.05, 经簇水平校正



图3bFC3点音素相关和无关条件的事件相关频谱扰动 注:虚线代表图片出现的时间, 灰色方框表示条件之间差异边缘显著, 0.05 < p < 0.1, 经簇水平校正
图3bFC3点音素相关和无关条件的事件相关频谱扰动 注:虚线代表图片出现的时间, 灰色方框表示条件之间差异边缘显著, 0.05 < p < 0.1, 经簇水平校正







[1] Alario, F. X., Perre, L., Castel, C., & Ziegler, J. C. (2007). The role of orthography in speech production revisited. Cognition, 102(3), 464-475.
doi: 10.1016/j.cognition.2006.02.002URLpmid: 16545792
[2] Bastiaansen, M., Magyari, L., & Hagoort, P. (2009). Syntactic unification operations are reflected in oscillatory dynamics during on-line sentence comprehension. Journal of Cognitive Neuroscience, 22(7), 1333-1347.
doi: 10.1162/jocn.2009.21283URLpmid: 19580386
[3] Bidelman, G. M. (2015). Induced neural beta oscillations predict categorical speech perception abilities. Brain and Language, 141, 62-69.
URLpmid: 25540857
[4] Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N., & Possing, E. T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512-528.
doi: 10.1093/cercor/10.5.512URLpmid: 10847601
[5] Brookes, M. J., Gibson, A. M., Hall, S. D., Furlong, P. L., Barnes, G. R., Hillebrand, A., ... Morris, P. G. (2005). GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response in visual cortex. NeuroImage, 26(1), 302-308.
doi: 10.1016/j.neuroimage.2005.01.050URLpmid: 15862231
[6] Burki, A., Cheneval, P. P., & Laganaro, M. (2015). Do speakers have access to a mental syllabary? ERP comparison of high frequency and novel syllable production. Brain and Language, 150, 90-102.
doi: 10.1016/j.bandl.2015.08.006URLpmid: 26367062
[7] Cai, Q., & Brysbaert, M. (2010). SUBTLEX-CH: Chinese word and character frequencies based on film subtitles. PLOS ONE, 5(6), e10729.
URLpmid: 20532192
[8] Cai, X., Yin, Y. L., & Zhang, Q. F. (2020). The roles of syllables and phonemes during phonological encoding in Chinese spoken word production: A topographic ERP study. Neuropsychologia, 144, 1-10.
[9] Chen, J. -Y. (2000). Syllable errors from naturalistic slips of the tongue in Mandarin Chinese. Psychologia: An International Journal of Psychology in the Orient, 43(1), 15-26.
[10] Chen, J. -Y., Chen, T. -M., & Dell, G. S. (2002). Word-form encoding in Mandarin Chinese as assessed by the implicit priming task. Journal of Memory and Language, 46(4), 751-781.
[11] Chen, J. -Y., O’Seaghdha, P. G., & Chen, T. -M. (2016). The primacy of abstract syllables in Chinese word production. Journal of Experimental Psychology: Learning, Memory and Cognition, 42(5), 825-836.
[12] Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
[13] Cohen, M. X. (2017). Where Does EEG Come From and What Does It Mean. Trends in Neurosciences, 40(4), 208-218.
doi: 10.1016/j.tins.2017.02.004URLpmid: 28314445
[14] Damian, M. F., & Bowers, J. S. (2003). Effects of orthography on speech production in a form-preparation paradigm. Journal of Memory and Language, 49(1), 119-132.
[15] Damian, M. F., & Dumay, N. (2007). Time pressure and phonological advance planning in spoken production. Journal of Memory and Language, 57(2), 195-209.
[16] Damian, M. F., & Martin, R. C. (1999). Semantic and phonological codes interact in single word production. Journal of Experimental Psychology: Learning, Memory and Cognition, 25(2), 345-361.
[17] Dell’acqua, R., Sessa, P., Peressotti, F., Mulatti, C., Navarrete, E., & Grainger, J. (2010). ERP evidence for ultra-fast semantic processing in the picture-word interference paradigm. Frontiers in Psychology, 1, 177.
[18] Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production. Psychological Review, 93(3), 283-321.
[19] Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.
[20] Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2015). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158-164.
URLpmid: 26642090
[21] Doelling, K. B., Arnal, L. H., Ghitza, O., & Poeppel, D. (2014). Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing. NeuroImage, 85, 761-768.
doi: 10.1016/j.neuroimage.2013.06.035URLpmid: 23791839
[22] Engell, A. D., & Mccarthy, G. (2014). Repetition suppression of face-selective evoked and induced EEG recorded from human cortex. Human Brain Mapping, 35(8), 4155-4162.
URLpmid: 24677530
[23] Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12(2), 105-118.
doi: 10.1038/nrn2979URLpmid: 21248789
[24] Feng, C., Yue, Y., & Zhang, Q, F. (2019). Syllables are Retrieved before Segments in the Spoken Production of Mandarin Chinese: An ERP Study. Scientific Reports, 9(1), 1-9.
URLpmid: 30626917
[25] Forster, K. I., & Davis, C. (1991). The density constraint on form-priming in the naming task: Interference effects from a masked prime. Journal of Memory and Language, 30(1), 1-25.
[26] Ghinst, M. V., Bourguignon, M., de Beeck, M. O., Wens, V., Marty, B., Hassid, S., ... de Tiege, X. (2016). Left superior temporal gyrus is coupled to attended speech in a cocktail-party auditory scene. The Journal of Neuroscience, 36(5), 1596-1606.
doi: 10.1523/JNEUROSCI.1730-15.2016URLpmid: 26843641
[27] Giraud, A. L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511-517.
doi: 10.1038/nn.3063URLpmid: 22426255
[28] Goupillaud, P. L., Grossmann, A., & Morlet, J. (1984). Cycle- octave and related transforms in seismic signal analysis. Geoexploration, 23(1), 85-102.
[29] Grillspector, K., Henson, R. N., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 14-23.
URLpmid: 16321563
[30] Gross, J., Hoogenboom, N., Thut, G., Schyns, P. G., Panzeri, S., Belin, P., & Garrod, S. (2013). Speech rhythms and multiplexed oscillatory sensory coding in the human brain. PLOS Biology, 11(12), e1001752.
doi: 10.1371/journal.pbio.1001732URLpmid: 24339748
[31] Gruber, T., & Müller, M. M. (2002). Effects of picture repetition on induced gamma band responses, evoked potentials, and phase synchrony in the human EEG. Cognitive Brain Research, 13(3), 377-392.
URLpmid: 11919002
[32] Gruber, T., Giabbiconi, C. M., Trujillobarreto, N. J., & Müller, M. M. (2006). Repetition suppression of induced gamma band responses is eliminated by task switching. European Journal of Neuroscience, 24(9), 2654-2660.
doi: 10.1111/j.1460-9568.2006.05130.xURLpmid: 17100853
[33] Howard, M. F., & Poeppel, D. (2012). The neuromagnetic response to spoken sentences: Co-modulation of theta band amplitude and phase. Neuroimage, 60(4), 2118-2127.
URLpmid: 22374481
[34] Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1-2), 101-144.
URLpmid: 15037128
[35] Jacobs, C. L., & Dell, G. S. (2014). ‘Hotdog’, not ‘Hot’ ‘dog’: The phonological planning of compound words. Language, Cognition and Neuroscience, 29(4), 512-523.
doi: 10.1080/23273798.2014.892144URLpmid: 24910853
[36] Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30(7), 317-324.
[37] Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606-617.
[38] Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22(1), 1-38.
doi: 10.1017/s0140525x99001776URLpmid: 11301520
[39] Lewis, A. G., Wang, L., & Bastiaansen, M. (2015). Fast oscillatory dynamics during language comprehension: Unification versus maintenance and prediction? Brain and Language, 148, 51-63.
doi: 10.1016/j.bandl.2015.01.003URLpmid: 25666170
[40] Li, X., Shao, X., Xia, J., & Xu, X. (2019). The cognitive and neural oscillatory mechanisms underlying the facilitating effect of rhythm regularity on speech comprehension. Journal of Neurolinguistics, 49, 155-167.
doi: 10.1016/j.jneuroling.2018.05.004URL
[41] Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54(6), 1001-1010.
doi: 10.1016/j.neuron.2007.06.004URLpmid: 17582338
[42] Makeig, S., Bell, A. J., Jung, T., & Sejnowski, T. J. (1995). Independent component analysis of electroencephalographic data. Neural Information Processing Systems, 8(8), 145-151.
[43] Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177-190.
doi: 10.1016/j.jneumeth.2007.03.024URLpmid: 17517438
[44] Meyer, A. S. (1991). The time course of phonological encoding in language production: Phonological encoding inside a syllable. Journal of Memory and Language, 30(1), 69-89.
doi: 10.1016/0749-596X(91)90011-8URL
[45] Molinaro, N., Lizarazu, M., Lallier, M., Bourguignon, M., & Carreiras, M. (2016). Out-of-synchrony speech entrainment in developmental dyslexia. Human Brain Mapping, 37(8), 2767-2783.
doi: 10.1002/hbm.23206URLpmid: 27061643
[46] Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). Fieldtrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence & Neuroscience, 2011, 156869.
doi: 10.1155/2011/363565URLpmid: 21687575
[47] O’Seaghdha, P. G., Chen, J.- Y., & Chen, T.- M. (2010). Proximate units in word production: Phonological encoding begins with syllables in Mandarin Chinese but with segments in English. Cognition, 115(2), 282-302.
doi: 10.1016/j.cognition.2010.01.001URLpmid: 20149354
[48] Peelle, J. E., Gross, J., & Davis, M. H. (2013). Phase-locked responses to speech in human auditory cortex are enhanced during comprehension. Cerebral Cortex, 23(6), 1378-1387.
doi: 10.1093/cercor/bhs118URLpmid: 22610394
[49] Pefkou, M., Arnal, L. H., Fontolan, L., & Giraud, A. L. (2017). θ-band and β-band neural activity reflects independent syllable tracking and comprehension of time-compressed speech. Journal of Neuroscience, 37(33), 7930-7938.
doi: 10.1523/JNEUROSCI.2882-16.2017URLpmid: 28729443
[50] Pe?a, M., & Melloni, L. (2012). Brain oscillations during spoken sentence processing. Journal of Cognitive Neuroscience, 24(5), 1149-1164.
doi: 10.1162/jocn_a_00144URLpmid: 21981666
[51] Perrin, F., Pernier, J., Bertrand, O. F., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184-187.
doi: 10.1016/0013-4694(89)90180-6URLpmid: 2464490
[52] Pivik, R. T., Broughton, R. J., Coppola, R., Davidson, R. J., Fox, N., & Nuwer, M. R. (1993). Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiology, 30(6), 547-558.
doi: 10.1111/j.1469-8986.1993.tb02081.xURLpmid: 8248447
[53] Poeppel, D. (2003). The analysis of speech in different temporal integration windows: Cerebral lateralization as 'asymmetric sampling in time'. Speech Communication, 41(1), 245-255.
doi: 10.1016/S0167-6393(02)00107-3URL
[54] Power, A. J., Mead, M., Barnes, L., & Goswami, U. (2012). Neural entrainment to rhythmically presented auditory, visual, and audio-visual speech in children. Frontiers in Psychology, 3, 216.
doi: 10.3389/fpsyg.2012.00216URLpmid: 22833726
[55] Qu, Q., Damian, M. F., & Kazanina, N. (2012). Sound-sized segments are significant for Mandarin speakers. Proceedings of the National Academy of Sciences of the United States of America, 109(35), 14265-14270.
doi: 10.1073/pnas.1200632109URLpmid: 22891321
[56] Roelofs, A. (1997). The weaver model of word-form encoding in speech production. Cognition, 64(3), 249-284.
doi: 10.1016/s0010-0277(97)00027-9URLpmid: 9426503
[57] Roelofs, A. (2015). Modeling of phonological encoding in spoken word production: From Germanic languages to Mandarin Chinese and Japanese. Japanese Psychological Research, 57(1), 22-37.
doi: 10.1111/jpr.2015.57.issue-1URL
[58] Roux, F., & Uhlhaas, P. J. (2014). Working memory and neural oscillations: Alpha-gamma versus theta-gamma codes for distinct WM information? Trends in Cognitive Sciences, 18(1), 16-25.
doi: 10.1016/j.tics.2013.10.010URLpmid: 24268290
[59] Rugg, M. D., & Coles, M. G. H. (1995). Oxford psychology series, No. 25. Electrophysiology of mind: Event-related brain potentials and cognition. New York, NY, US: Oxford University Press.
[60] Saur, D., Schelter, B., Schnell, S., Kratochvil, D., Kupper, H., Kellmeyer, P., ... Weiller, C. (2010). Combining functional and anatomical connectivity reveals brain networks for auditory language comprehension. NeuroImage, 49(4), 3187-3197.
doi: 10.1016/j.neuroimage.2009.11.009URL
[61] Schiller, N. O. (2008). The masked onset priming effect in picture naming. Cognition, 106(2), 952-962.
doi: 10.1016/j.cognition.2007.03.007URLpmid: 17442296
[62] Sereno, J. A., & Lee, H. (2015). The Contribution of Segmental and Tonal Information in Mandarin Spoken Word Processing. Language and Speech, 58(2), 131-151.
doi: 10.1177/0023830914522956URL
[63] Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13(2), 121-134.
doi: 10.1038/nrn3137URL
[64] van Petten, C., & Luka, B. J. (2012). Prediction during language comprehension: Benefits, costs, and ERP components. International Journal of Psychophysiology, 83(2), 176-190.
doi: 10.1016/j.ijpsycho.2011.09.015URL
[65] Wang, J., Wong, W. K., Wang, S., & Chen, H. C. (2017). Primary phonological planning units in spoken word production are language-specific: Evidence from an ERP study. Scientific Reports, 7(1), 5815.
doi: 10.1038/s41598-017-06186-zURLpmid: 28724982
[66] Ward, L. M. (2003). Synchronous neural oscillations and cognitive processes. Trends in Cognitive Sciences, 7(12), 553-559.
doi: 10.1016/j.tics.2003.10.012URLpmid: 14643372
[67] You, W. P., Zhang Q. F., & Verdonschot, R. G. (2012). Masked syllable priming effects in word and picture naming in Chinese. PLoS ONE, 7(10), e46595.
doi: 10.1371/journal.pone.0046595URLpmid: 23056360
[68] Yu, M., Mo, C. & Mo L. (2014). The role of phoneme in Mandarin Chinese production: Evidence from ERPs. PLoS One, 9(9), e106486.
doi: 10.1371/journal.pone.0106486URLpmid: 25191857
[69] Yue, Y., & Zhang, Q. F. (2015). Syllable and Segments Effects in Mandarin Chinese Spoken Word Production. Acta Psychologica Sinica, 47(3), 319-328.
doi: 10.3724/SP.J.1041.2015.00319URL
[ 岳源, 张清芳. (2015). 汉语口语产生中音节和音段的促进和抑制效应. 心理学报, 47(3), 319-328.]
[70] Zhang, Q. F. (2005). The syllable’s role in language production. Advances in Psychological Science, 13(6), 752-759.
[ 张清芳. (2005). 音节在语言产生中的作用. 心理科学进展, 13(6), 752-759.]
[71] Zhang, Q. F., & Damian, M. F. (2019). Syllables constitute proximate units for Mandarin speakers: Electrophysiological evidence from a masked priming task. Psychophysiology, 56(4), e13317.
doi: 10.1111/psyp.13317URLpmid: 30657602
[72] Zhang, Q. F., & Wang, C. (2014). Syllable frequency and word frequency effects in spoken and written word production in a non-alphabetic script. Frontiers in Psychology, 5, 120.
doi: 10.3389/fpsyg.2014.00120URLpmid: 24600420
[73] Zhang, Q. F., & Yang, Y. F. (2003a). The determiners of picturenaming latency. Acta Psychologica Sinica, 35(4), 447-454.
[ 张清芳, 杨玉芳. (2003a). 影响图画命名时间的因素. 心理学报, 35(4), 447-454.]
[74] Zhang, Q. F., & Yang, Y. F. (2003b). The lexical access theory in speech production. Journal of Developments in Psychology, 11(1), 6-11.
[ 张清芳, 杨玉芳. (2003b). 言语产生中的词汇通达理论. 心理科学进展, 11(1), 6-11.]
[75] Zhang, Q. F., & Yang, Y. F. (2005). The phonological planning unit in Chinese monosyllabic word production. Psychological Science, 28(2), 374-378.
[ 张清芳, 杨玉芳. (2005). 汉语单音节词汇产生中音韵编码的单元. 心理科学, 28(2), 374-378.]
[76] Zhu, X., Damian, M. F., & Zhang, Q. (2015). Seriality of semantic and phonological processes during overt speech in Mandarin as revealed by event-related brain potentials. Brain and Language, 144, 16-25.
doi: 10.1016/j.bandl.2015.03.007URLpmid: 25880902




[1]刘洁, 李瑾琪, 申超然, 胡小惠, 赵庭浩, 关青, 罗跃嘉. 数学焦虑个体近似数量加工的神经机制:一项EEG研究[J]. 心理学报, 2020, 52(8): 958-970.
[2]侯璐璐, 陈莅蓉, 周仁来. 经前期综合征与奖赏进程失调——来自脑电的证据[J]. 心理学报, 2020, 52(6): 742-757.
[3]张清芳,王雪娇. 汉语口语词汇产生的音韵编码单元:内隐启动范式的ERP研究[J]. 心理学报, 2020, 52(4): 414-425.
[4]杨群, 张清芳. 汉语图画命名过程的年老化机制:非选择性抑制能力的影响[J]. 心理学报, 2019, 51(10): 1079-1090.
[5]付超, 张振, 何金洲, 黄四林, 仇剑崟, 王益文. 普遍信任博弈决策的动态过程 ——来自脑电时频分析的证据[J]. 心理学报, 2018, 50(3): 317-326.
[6]何洁莹, 张清芳. 老年人书写产生中词汇频率和音节频率效应的时间进程:ERP研究[J]. 心理学报, 2017, 49(12): 1483-1493.
[7]刘文理;周详;张明亮. 汉语塞−元−塞音序列语境效应机制探讨[J]. 心理学报, 2016, 48(9): 1057-1069.
[8]赵荣;王小娟;杨剑峰. 声调在汉语音节感知中的作用[J]. 心理学报, 2016, 48(8): 915-923.
[9]岳源;张清芳. 汉语口语产生中音节和音段的促进和抑制效应[J]. 心理学报, 2015, 47(3): 319-328.
[10]李小健,王文娜,李晓倩. 同音字族内的听觉通道词频效应与同音字表征的激活[J]. 心理学报, 2011, 43(07): 749-762.
[11]仲晓波,杨玉芳. 汉语普通话句子重音在时长方面的声学表现[J]. 心理学报, 2003, 35(02): 143-149.
[12]周晓林,庄捷,于淼. 言语产生中双词素词的语音编码[J]. 心理学报, 2002, 34(03): 22-27.
[13]姜涛,彭聃龄. 汉语儿童的语音意识特点及阅读能力高低读者的差异[J]. 心理学报, 1999, 31(01): 60-68.
[14]杨玉芳,孙健. 词边界信息在句中的分布[J]. 心理学报, 1994, 26(01): 8-13.
[15]陈萍,许政援. 儿童最初词汇的获得及其过程[J]. 心理学报, 1993, 25(02): 85-92.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4808
相关话题/心理 汉语 图片 过程 神经