删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

汉语口语词汇产生的音韵编码单元:内隐启动范式的ERP研究

本站小编 Free考研考试/2022-01-01

张清芳(), 王雪娇
中国人民大学心理学系, 北京 100872
收稿日期:2019-03-29出版日期:2020-04-25发布日期:2020-02-25
通讯作者:张清芳E-mail:zhang@ruc.edu.cn

基金资助:* 北京市社会科学基金重点项目(16YYA006);中国人民大学科学研究基金项目(中央高校基本科研业务费专项)(18XNLG28)

Primary phonological planning units in Chinese spoken word production: Evidence from an ERP study with implicit priming paradigm

ZHANG Qingfang(), WANG Xuejiao
Department of Psychology, Renmin University of China, Beijing 100872, China
Received:2019-03-29Online:2020-04-25Published:2020-02-25
Contact:ZHANG Qingfang E-mail:zhang@ruc.edu.cn






摘要/Abstract


摘要: 本研究中选择英语水平低的汉语母语者, 排除作为二语的英语音韵编码单元(音素)可能对汉语口语词汇产生过程的影响后, 运用事件相关电位技术, 考察了汉语口语产生过程中音节和音素效应的时间进程。实验采用内隐启动范式, 要求被试看到提示词之后说出对应的目标词。事件相关电位分析结果发现, 音节效应出现在线索词呈现后的100~400 ms之间, 音素效应出现在500~600 ms之间, 波形表现为相关条件比无关条件的波形更正。这表明在词汇选择之后的音韵编码阶段讲话者首先提取的单元是音节, 而音素效应出现的时间窗口可能是音韵编码阶段后期或者是语音编码阶段, 结果验证了合适编码单元假说的观点。



图1O¢Seaghdha等(2010)提出的汉语单音节词汇产生的示意图
图1O¢Seaghdha等(2010)提出的汉语单音节词汇产生的示意图


表1相关类型、条件、脑区和半球为自变量在0~600 ms中方差分析的结果
变异 时间窗口(ms)
0~100 100~200 200~300 300~400 400~500 500~600
条件(1, 17) 4.21
类型(1, 17) 5.09*
条件×类型(1, 17) 6.31*
条件×脑区(1, 17) 7.00* 5.34* 4.49
条件×半球(2, 34)
条件×类型×脑区(1, 17) 4.01
条件×类型×半球(2, 34)
条件×类型×半球×脑区(2, 34) 4.30*

表1相关类型、条件、脑区和半球为自变量在0~600 ms中方差分析的结果
变异 时间窗口(ms)
0~100 100~200 200~300 300~400 400~500 500~600
条件(1, 17) 4.21
类型(1, 17) 5.09*
条件×类型(1, 17) 6.31*
条件×脑区(1, 17) 7.00* 5.34* 4.49
条件×半球(2, 34)
条件×类型×脑区(1, 17) 4.01
条件×类型×半球(2, 34)
条件×类型×半球×脑区(2, 34) 4.30*


表2不同时间窗口的音节和音素效应
兴趣区
(1, 17)
时间窗口(ms) 兴趣区
(1, 17)
时间窗口(ms)
0~100 100~200 200~300 300~400 400~500 500~600 0~100 100~200 200~300 300~400 400~500 500~600
音节效应 音素效应
左前 3.02* 2.55* 2.38* 左前
中前 2.10 2.19* 2.63* 中前
右前 3.35* 3.82* 3.26* 右前 2.71*
左后 2.04 左后
中后 2.28* 中后
右后 2.67* 右后 2.43*

表2不同时间窗口的音节和音素效应
兴趣区
(1, 17)
时间窗口(ms) 兴趣区
(1, 17)
时间窗口(ms)
0~100 100~200 200~300 300~400 400~500 500~600 0~100 100~200 200~300 300~400 400~500 500~600
音节效应 音素效应
左前 3.02* 2.55* 2.38* 左前
中前 2.10 2.19* 2.63* 中前
右前 3.35* 3.82* 3.26* 右前 2.71*
左后 2.04 左后
中后 2.28* 中后
右后 2.67* 右后 2.43*



图26个兴趣区内音节和音素效应的平均波形图(方形框表示两类条件对比有显著差异)
图26个兴趣区内音节和音素效应的平均波形图(方形框表示两类条件对比有显著差异)



图3在不同时间窗口下的音节和音素效应的平均波幅与各个时间窗口下的地形图(图中误差棒均为95% CI)
图3在不同时间窗口下的音节和音素效应的平均波幅与各个时间窗口下的地形图(图中误差棒均为95% CI)


表3实验中所使用的材料
组别 音节 异质
1 2 3 4
同质 /wei/ 灾祸 危机 wei1 院子 围墙 wei2 屁股 尾巴 wei3 人造 卫星 wei4
/hu/ 医生 护士 hu4 氧气 呼吸 hu1 剃须 胡子 hu2 宝石 琥珀 hu3
/guo/ 收获 果实 guo3 惩罚 过错 guo4 烧水 锅炉 guo1 熊猫 国宝 guo2
/fan/ 神仙 凡人 fan2 化学 反应 fan3 食物 饭馆 fan4 航海 帆船 fan1
音素 1 2 3 4
/t/ 地下 通道 tong1 师傅 徒弟 tu2 运动 体育 ti3 宇宙 太空 tai4
/l/ 辩护 律师 lv4 废品 垃圾 la1 闪电 雷声 lei2 生日 礼物 li3
/d/ 披风 斗篷 dou3 和尚 道士 dao4 榔头 钉子 ding1 鸦片 毒品 du2
/m/ 排序 名次 ming2 帅哥 美女 mei3 视线 目光 mu4 擦拭 抹布 ma1

表3实验中所使用的材料
组别 音节 异质
1 2 3 4
同质 /wei/ 灾祸 危机 wei1 院子 围墙 wei2 屁股 尾巴 wei3 人造 卫星 wei4
/hu/ 医生 护士 hu4 氧气 呼吸 hu1 剃须 胡子 hu2 宝石 琥珀 hu3
/guo/ 收获 果实 guo3 惩罚 过错 guo4 烧水 锅炉 guo1 熊猫 国宝 guo2
/fan/ 神仙 凡人 fan2 化学 反应 fan3 食物 饭馆 fan4 航海 帆船 fan1
音素 1 2 3 4
/t/ 地下 通道 tong1 师傅 徒弟 tu2 运动 体育 ti3 宇宙 太空 tai4
/l/ 辩护 律师 lv4 废品 垃圾 la1 闪电 雷声 lei2 生日 礼物 li3
/d/ 披风 斗篷 dou3 和尚 道士 dao4 榔头 钉子 ding1 鸦片 毒品 du2
/m/ 排序 名次 ming2 帅哥 美女 mei3 视线 目光 mu4 擦拭 抹布 ma1







[1] Alario F. X., Perre L., Castel C., & Ziegler J. C . (2007). The role of orthography in speech production revisited. Cognition, 102(3), 464-475.
[2] Chen J.-Y . (2000). Syllable errors from naturalistic slips of the tongue in Mandarin Chinese. Psychologia, 43(1), 15-26.
[3] Chen J.-Y., Chen T.-M., & Dell G. S . (2002). Word-form encoding in Mandarin Chinese as assessed by the implicit priming task. Journal of Memory and Language, 46(4), 751-781.
[4] Chen J.-Y., Lin W.-C., & Ferrand L . (2003). Masked priming of the syllable in Mandarin Chinese speech production. Chinese Journal of Psychology, 45, 107-120.
[5] Chen J.-Y., O'Séaghdha P. G., & Chen T.-M . (2016). The primacy of abstract syllables in Chinese word production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(5), 825-836.
[6] Cholin J., Schiller N. O., & Levelt W. J. M. (2004). The preparation of syllables in speech production. Journal of Memory and Language, 50(1), 47-61.
[7] Damian M. F., & Bowers J. S . (2003). Effects of orthography on speech production in a form-preparation paradigm. Journal of Memory and Language, 49(1), 119-132.
[8] Damian M. F., & Dumay N . (2007). Time pressure and phonological advance planning in spoken production. Journal of Memory and Language, 57(2), 195-209.
[9] Damian M. F., & Dumay N . (2009). Exploring phonological encoding through repeated segments. Language and Cognitive Processes, 24(5), 685-712.
[10] Damian M. F., & Martin R. C . (1999). Semantic and phonological codes interact in single word production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(2), 345-361.
[11] Dell G. S . (1986). A spreading-activation theory of retrieval in sentence production. Psychological Review, 93(3), 283-321.
[12] Desmedt J. E . (1980). P300 in serial tasks: An essential post-decision closure mechanism. Progessing in Brain Research, 54, 682-686.
[13] Donchin E., & Coles M. G. H . (1988). Is the P300 component a manifestation of context updating? The Behavioral and Brain Sciences, 11(3), 357-427.
[14] Forster K. I., & Davis C . (1991). The density constraint on form-priming in the naming task: Interference effects from a masked prime. Journal of Memory and Language, 30(1), 1-25.
[15] Gray J. R., & Burgess G. C . (2004). Personality differences in cognitive control? BAS, processing efficiency, and the prefrontal cortex. Journal of Research in Personality, 38(1), 35-36.
[16] Hackley S. A., Woldorff M., & Hillyard S. A . (1990). Cross- modal selective attention effects on retinal, myogenic, brainstem, and cerebral evoked potentials. Psychophysiology, 27(2), 195-208.
[17] Indefrey P . (2011). The spatial and temporal signatures of word production components: A critical update. Frontiers in Psychology, 2, 1-16.
[18] Jacobs C. L., & Dell G. S . (2014). “hotdog”, not “hot” “dog”: The phonological planning of compound words. Language, cognition and neuroscience, 29(4), 512-523.
[19] Kinoshita S., & Woollams A . (2002). The masked onset priming effect in naming: Computation of phonology or speech planning. Memory and Cognition, 30, 237-245.
[20] Levelt W. J. M., Roelofs A., & Meyer A.S . (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22(1), 1-38.
[21] Luck S. J., & Hillyard S. A . (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291-308.
[22] Malouf T., & Kinoshita S . (2007). Masked onset priming effect for high-frequency words: Further support for the speech-planning account. Quarterly Journal of Experimental Psychology, 60(8), 1155-1167.
[23] Meyer A. S . (1990). The time course of phonological encoding in language production: The encoding of successive syllables of a word. Journal of Memory & Language, 29(5), 524-545.
[24] Meyer A. S . (1991). The time course of phonological encoding in language production: Phonological encoding inside a syllable. Journal of Memory and Language, 30(1), 69-89.
[25] Meyer A. S., & Schriefers H . (1991). Phonological facilitation in picture-word interference experiments: Effects of stimulus onset asynchrony and types of interfering stimuli. Journal of Experimental Psychology: Learning Memory, and Cognition, 17(6), 1146-1160.
[26] O’Seaghdha P. G., Chen J.-Y., & Chen T.-M . (2010). Proximate units in word production: Phonological encoding begins with syllables in Mandarin Chinese but with segments in English. Cognition, 115(2), 282-302.
[27] O’Seaghdha P. G., Chen J.-Y., & Chen T.-M . (2013). Close but not proximate: The significance of phonological segments in speaking depends on their functional engagement. Proceedings of the National Academy of Sciences of the United States of America, 110(1), E3.
[28] Parker Jones O., Green D. W., Grogan A., Pliatsikas C., Filippopolitis K., Ali N., ... Price C. J . (2012). Where, when and why brain activation differs for bilinguals and monolinguals during picture naming and reading aloud. Cerebral Cortex, 22(4), 892-902.
[29] Picton T. W . (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9(4), 456-479.
[30] Qu Q. Q., Damian M. F., & Kazanina N . (2012). Sound-sized segments are significant for Mandarin speakers. Proceedings of the National Academy of Sciences of the United States of America, 109(35), 14265-14270.
[31] Roelofs A . (1997). The WEAVER model of word-form encoding in speech production. Cognition, 64(3), 249-284.
[32] Roelofs A . (2015). Modeling of phonological encoding in spoken word production: From Germanic languages to Mandarin Chinese and Japanese. Japanese Psychological Research, 57(1), 22-37.
[33] Schiller N. O . (2008). The masked onset priming effect in picture naming. Cognition, 106(2), 952-962.
[34] Shattuck-Hufnagel S . (1979). Speech errors as evidence for a serial-ordering mechanism in sentence production. In W. E. Cooper & E. C. T. Walker (Eds), Sentence processing: Psycholinguistic studies presented to Merrill Garret (pp. 295-342). Hillsdale, NJ: Erlbaum
[35] Verdonschot R. G., Nakayama M., Zhang Q. F., Tamaoka K., & Schiller N. O . (2013). The proximate phonological unit of Chinese-English bilinguals: Proficiency matters. PloS One, 8(4), e61454.
[36] Verdonschot R. G., Tokimoto S., & Miyaoka Y . (2019). The fundamental phonological unit of Japanese word production: An EEG study using the picture-word interference paradigm. Journal of Neurolinguistics, 51, 184-193.
[37] Verleger R . (1998). Toward an integration of P3 research with cognitive neuroscience. Behavioral and Brain Sciences, 21(1), 150-152.
[38] Wang J., Wong A. W.-K., Wang S. P., & Chen H.-C . (2017). Primary phonological planning units in spoken word production are language-specific: Evidence from an ERP study. Scientific Reports, 7, 5815-5822.
[39] Wang L., Bastiaansen M., Yang Y. F., & Hagoort P . (2011). The influence of information structure on the depth of semantic processing: How focus and pitch accent determine the size of the N400 effect. Neuropsychologia, 49(5), 813-820.
[40] Wong A. W.-K, & Chen H.-C . (2008). Processing segmental and prosodic information in Cantonese word production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(5), 1172-1190.
[41] Wong A. W.-K, & Chen H.-C . (2009). What are effective phonological units in Cantonese spoken word planning? Psychonomic Bulletin & Review, 16(5), 888-892.
[42] Wong A. W.-K., Huang. J, & Chen H.-C . (2012). Phonological units in spoken word production: Insights from Cantonese. PloS One, 7(11), e48776. doi: 10.1371/journal.pone.0048776.
[43] Wong A. W.-K., Ng T.-Y., & Chen H.-C . (2016). Syllabic encoding during overt speech production in Cantonese: Evidence from temporal brain responses. Brain Research, 1648, 101-109.
[44] You W., Zhang Q., & Verdonschot R. G . (2012). Masked syllable priming effects in word and picture naming in chinese. PLoS ONE, 7(10).
[45] Yu M., Mo C., & Mo L . (2014). The role of phoneme in Mandarin Chinese production: Evidence from ERPs. PLoS One, 9(9), e106486. doi: 10.1371/journal.pone.0106486.
[46] Yue Y., & Zhang Q. F . (2015). Syllable and segments effects in Mandarin Chinese spoken word production. Acta Psychologica Sinica, 47(3), 319-328.
[ 岳源, 张清芳 . (2015). 汉语口语产生中音节和音段的促进和抑制效应. 心理学报, 47(3), 319-328.]
[47] Zhang Q. F . (2008). Phonological encoding in monosyllabic and bisyllabic Mandarin word production: Implicit priming paradigm study. Acta Psychologica Sinica, 40(3), 253-262.
[ 张清芳 . (2008). 汉语单音节和双音节词汇产生中的音韵编码过程: 内隐启动范式研究. 心理学报, 40(3), 253-262.]
[48] Zhang Q. F., & Damian M. F . (2019). Syllables constitute proximate units for Mandarin speakers: Electrophysiological evidence from a masked priming task. Psychophysiology, 56(1), e13317. doi: 10.1111/psyp.13317.
[49] Zhang Q. F., & Yang Y. F . (2005). The phonological planning unit in Chinese monosyllabic word production. Journal of Psychological Science, 28(2), 374-378.
[ 张清芳, 杨玉芳 . (2005). 汉语单音节词汇产生中音韵编码的单元. 心理科学, 28(2), 374-378.]




[1]张清芳, 钱宗愉, 朱雪冰. 汉语口语词汇产生中的多重音韵激活:单词翻译任务的ERP研究[J]. 心理学报, 2021, 53(1): 1-14.
[2]辛昕, 兰天一, 张清芳. 英汉双语者二语口语产生中音韵编码过程的同化机制[J]. 心理学报, 2020, 52(12): 1377-1392.
[3]蒋宇宸, 蔡笑, 张清芳. θ频段(4~8 Hz)的活动反映了汉语口语产生中音节信息的加工[J]. 心理学报, 2020, 52(10): 1199-1211.
[4]娄昊,李丛,张清芳. 习得年龄对客体和动作图画口语命名的不同影响:ERP研究[J]. 心理学报, 2019, 51(2): 143-153.
[5]何洁莹, 张清芳. 老年人书写产生中词汇频率和音节频率效应的时间进程:ERP研究[J]. 心理学报, 2017, 49(12): 1483-1493.
[6]刘文理;周详;张明亮. 汉语塞−元−塞音序列语境效应机制探讨[J]. 心理学报, 2016, 48(9): 1057-1069.
[7]赵荣;王小娟;杨剑峰. 声调在汉语音节感知中的作用[J]. 心理学报, 2016, 48(8): 915-923.
[8]岳源;张清芳. 汉语口语产生中音节和音段的促进和抑制效应[J]. 心理学报, 2015, 47(3): 319-328.
[9]李小健,王文娜,李晓倩. 同音字族内的听觉通道词频效应与同音字表征的激活[J]. 心理学报, 2011, 43(07): 749-762.
[10]张清芳. 汉语单音节和双音节词汇产生中的音韵编码过程:内隐启动范式研究[J]. 心理学报, 2008, 40(03): 253-262.
[11]张积家,肖二平. 汉语口吃者在不出声言语中的语音编码[J]. 心理学报, 2008, 40(03): 263-273.
[12]张清芳,杨玉芳. 汉语词汇产生中词汇选择和音韵编码之间的交互作用[J]. 心理学报, 2006, 38(04): 480-488.
[13]张清芳,杨玉芳. 汉语词汇产生中语义、字形和音韵激活的时间进程[J]. 心理学报, 2004, 36(01): 1-8.
[14]仲晓波,杨玉芳. 汉语普通话句子重音在时长方面的声学表现[J]. 心理学报, 2003, 35(02): 143-149.
[15]周晓林,庄捷,于淼. 言语产生中双词素词的语音编码[J]. 心理学报, 2002, 34(03): 22-27.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4682
相关话题/汉语 心理 过程 实验 材料