删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

汉语复合词视觉识别的时间进程:基于同形语素的行为与ERP证据

本站小编 Free考研考试/2022-01-01

吴建设1(), 常嘉宝1,2(), 邱寅晨3, Joseph Dien4
1 北京第二外国语学院英语学院 北京 100024
2 唐山市开滦第二中学, 河北 唐山 063100
3 北京第二外国语学院欧洲学院, 北京 100024
4 马里兰大学帕克分校, 美国马里兰州 20742
收稿日期:2018-11-30出版日期:2020-02-25发布日期:2019-12-24
通讯作者:吴建设,常嘉宝E-mail:wujianshe@bisu.edu.cn;changjiabao2016@163.com

基金资助:* 北京市长城****培养计划(PXM2017_014221_000070)

The temporal process of visual word recognition of Chinese compound: Behavioral and ERP evidences based on homographic morphemes

WU Jianshe1(), CHANG Jiabao1,2(), QIU Yinchen3, Joseph DIEN4
1 English Dept., Beijing International Studies University, Beijing 100024, China
2 Tangshan Kailuan No. 2 High School, Tangshan 063100
3 French Dept., Beijing International Studies University, Beijing 100024, China
4 Human Development and Quantitative Methodology Dept., University of Maryland, College Park, MD, U.S.A. 20742
Received:2018-11-30Online:2020-02-25Published:2019-12-24
Contact:WU Jianshe,CHANG Jiabao E-mail:wujianshe@bisu.edu.cn;changjiabao2016@163.com






摘要/Abstract


摘要: 基于同形语素抑制效应, 本研究探讨了汉语复合词视觉识别中的形音义激活进程。结果发现:(1) 同形异音、同形同音、相同条件相对于控制条件都产生了语素启动效应; (2) 在P2、晚期N400成分上, 同形同音条件与控制条件更为接近, 但与同形异音及相同条件差别显著; (3) 在早期N400成分上, 同形同音条件与相同条件更为接近, 但与同形异音条件差别显著。研究表明, 汉语复合词的视觉识别的早期阶段可能为基于词位的形态-正字法加工, 字形匹配与音位信息是首要影响因素, 但语义是否介入仍未可知; 而晚期阶段则可能为基于词条的形态-语义加工, 主要涉及语义竞争与选择。本研究结果支持了McClelland等****提出的“平行分布加工模型”。


表1实验材料举例及特征信息
特征 +O-P-S +O+P-S +O+P+S -O-P-S 目标词
作坊 作息 作诗 账本 作画
整词词频 2.85 (0.41) 2.84 (0.48) 2.88 (0.44) 2.93 (0.38) 2.87 (0.47)
首字字频 5.31 (0.59) 5.31 (0.59) 5.31 (0.59) 4.50 (0.73) 5.31 (0.59)
尾字字频 4.98 (0.84) 4.90 (0.69) 4.97 (0.67) 4.55 (0.88) 4.81 (0.88)
整词笔画 16 (4.7) 16 (4.6) 17 (4.1) 17 (4.3) 16 (4.1)
首字笔画 8.15 (3.33) 8.15 (3.33) 8.15 (3.33) 8.26 (3.1) 8.15 (3.33)
尾字笔画 7.78 (3.24) 8.33 (3.02) 8.61 (2.6) 9.07 (3.1) 8.30 (2.5)
语义相似度 1.87 (1.05) 1.99 (1.11) 4.58 (0.71) 1.19 (0.53) /
音位相同度 0.07 (0.25) 0.95 (0.22) 0.96 (0.18) 0.00 (0.00) /

表1实验材料举例及特征信息
特征 +O-P-S +O+P-S +O+P+S -O-P-S 目标词
作坊 作息 作诗 账本 作画
整词词频 2.85 (0.41) 2.84 (0.48) 2.88 (0.44) 2.93 (0.38) 2.87 (0.47)
首字字频 5.31 (0.59) 5.31 (0.59) 5.31 (0.59) 4.50 (0.73) 5.31 (0.59)
尾字字频 4.98 (0.84) 4.90 (0.69) 4.97 (0.67) 4.55 (0.88) 4.81 (0.88)
整词笔画 16 (4.7) 16 (4.6) 17 (4.1) 17 (4.3) 16 (4.1)
首字笔画 8.15 (3.33) 8.15 (3.33) 8.15 (3.33) 8.26 (3.1) 8.15 (3.33)
尾字笔画 7.78 (3.24) 8.33 (3.02) 8.61 (2.6) 9.07 (3.1) 8.30 (2.5)
语义相似度 1.87 (1.05) 1.99 (1.11) 4.58 (0.71) 1.19 (0.53) /
音位相同度 0.07 (0.25) 0.95 (0.22) 0.96 (0.18) 0.00 (0.00) /



图1实验1流程图
图1实验1流程图


表2不同启动类型的反应时和准确率
启动条件 Acc RT 95% CI 启动量
+O-P-S 0.96 605 (11) 583, 628 36
+O+P-S 0.96 613 (10) 593, 634 28
+O+P+S 0.97 601 (9) 583, 619 40
-O-P-S 0.95 641 (9) 623, 660 --

表2不同启动类型的反应时和准确率
启动条件 Acc RT 95% CI 启动量
+O-P-S 0.96 605 (11) 583, 628 36
+O+P-S 0.96 613 (10) 593, 634 28
+O+P+S 0.97 601 (9) 583, 619 40
-O-P-S 0.95 641 (9) 623, 660 --



图2实验2流程图
图2实验2流程图



图3统计分析中的电极分区
图3统计分析中的电极分区



图4不同启动类型ERP波形比较
图4不同启动类型ERP波形比较



图5在Cz电极不同启动类型的ERP波形比较
图5在Cz电极不同启动类型的ERP波形比较



图6不同启动条件下的差异波地形图比较 注:参考Dominguez等(2004)等****研究, 采用了“控制条件-启动条件”。
图6不同启动条件下的差异波地形图比较 注:参考Dominguez等(2004)等****研究, 采用了“控制条件-启动条件”。


表3P200、早期N400、晚期N400成分统计结果摘要表
成分 位置 (I)基线 (J)启动类型 差值(I-J) p 95% CI
下限 上限
P200 中线:额中央区 +O+P-S +O-P-S -0.686 0.065 -1.4 0.029
+O+P+S -0.685* 0.014 -1.264 -0.107
-O-P-S +O-P-S -0.704* 0.038 -1.381 -0.028
+O+P+S -0.704* 0.049 -1.406 -0.002
中线:中央区 +O+P-S +O-P-S -1.041* 0.000 -1.619 -0.462
+O+P+S -0.589* 0.022 -1.116 -0.063
-O-P-S +O-P-S -1.078* 0.002 -1.831 -0.325
早期
N400
中线:前额区 -O-P-S +O-P-S -0.923* 0.027 -1.772 -0.075
+O+P-S -0.973* 0.049 -1.943 -0.003
+O+P+S -1.156* 0.002 -1.959 -0.353
中线:额中央区 -O-P-S +O-P-S -1.066* 0.025 -2.035 -0.098
+O+P-S -0.952 0.05 -1.905 0.001
+O+P+S -1.338* 0.003 -2.292 -0.383
中线:中央区 +O+P-S +O-P-S -0.581* 0.027 -1.113 -0.048
-O-P-S +O-P-S -1.474* 0.002 -2.483 -0.464
+O+P-S -0.893* 0.039 -1.753 -0.033
+O+P+S -1.129* 0.013 -2.075 -0.183
右侧:额中央区 +O+P-S +O-P-S -0.588* 0.049 -1.174 -0.001
右侧:中央区 +O+P-S +O-P-S -0.617* 0.02 -1.162 -0.072
晚期
N400
中线:额中央区 +O+P-S +O+P+S -1.073* 0.003 -1.832 -0.314
中线:中央区 +O+P-S +O-P-S -0.948* 0.002 -1.609 -0.287
+O+P+S -1.125* 0.000 -1.774 -0.476
中线:中顶区 +O+P-S +O-P-S -0.712* 0.047 -1.418 -0.006
+O+P+S -1.010* 0.001 -1.645 -0.375
-O-P-S +O-P-S -1.015* 0.049 -2.028 -0.003
+O+P+S -1.313* 0.014 -2.421 -0.205
中线:顶区 +O+P-S +O-P-S -1.067* 0.02 -2.007 -0.127
+O+P+S -1.178* 0.000 -1.888 -0.468
右侧:中央区 +O+P-S +O-P-S -0.692* 0.048 -1.381 -0.003

表3P200、早期N400、晚期N400成分统计结果摘要表
成分 位置 (I)基线 (J)启动类型 差值(I-J) p 95% CI
下限 上限
P200 中线:额中央区 +O+P-S +O-P-S -0.686 0.065 -1.4 0.029
+O+P+S -0.685* 0.014 -1.264 -0.107
-O-P-S +O-P-S -0.704* 0.038 -1.381 -0.028
+O+P+S -0.704* 0.049 -1.406 -0.002
中线:中央区 +O+P-S +O-P-S -1.041* 0.000 -1.619 -0.462
+O+P+S -0.589* 0.022 -1.116 -0.063
-O-P-S +O-P-S -1.078* 0.002 -1.831 -0.325
早期
N400
中线:前额区 -O-P-S +O-P-S -0.923* 0.027 -1.772 -0.075
+O+P-S -0.973* 0.049 -1.943 -0.003
+O+P+S -1.156* 0.002 -1.959 -0.353
中线:额中央区 -O-P-S +O-P-S -1.066* 0.025 -2.035 -0.098
+O+P-S -0.952 0.05 -1.905 0.001
+O+P+S -1.338* 0.003 -2.292 -0.383
中线:中央区 +O+P-S +O-P-S -0.581* 0.027 -1.113 -0.048
-O-P-S +O-P-S -1.474* 0.002 -2.483 -0.464
+O+P-S -0.893* 0.039 -1.753 -0.033
+O+P+S -1.129* 0.013 -2.075 -0.183
右侧:额中央区 +O+P-S +O-P-S -0.588* 0.049 -1.174 -0.001
右侧:中央区 +O+P-S +O-P-S -0.617* 0.02 -1.162 -0.072
晚期
N400
中线:额中央区 +O+P-S +O+P+S -1.073* 0.003 -1.832 -0.314
中线:中央区 +O+P-S +O-P-S -0.948* 0.002 -1.609 -0.287
+O+P+S -1.125* 0.000 -1.774 -0.476
中线:中顶区 +O+P-S +O-P-S -0.712* 0.047 -1.418 -0.006
+O+P+S -1.010* 0.001 -1.645 -0.375
-O-P-S +O-P-S -1.015* 0.049 -2.028 -0.003
+O+P+S -1.313* 0.014 -2.421 -0.205
中线:顶区 +O+P-S +O-P-S -1.067* 0.02 -2.007 -0.127
+O+P+S -1.178* 0.000 -1.888 -0.468
右侧:中央区 +O+P-S +O-P-S -0.692* 0.048 -1.381 -0.003







[1] Allen M., & Badecker W . (1999). Stem homograph Inhibition and stem allomorphy: Representing and processing inflected forms in a multilevel lexical system. Journal of Memory & Language, 41(1), 105-123.
[2] Amenta S., & Crepaldi D . (2012). Morphological processing as we know it: An analytical review of morphological effects in visual word identification. Frontiers in Psychology, 3, 232-241.
[3] Baayen R. H., Milin P., Durdevic D. F., Hendrix P., & Marelli M . (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. Psychological Review, 118(3), 438-481.
[4] Badecker W., & Allen M . (2002). Morphological parsing and the perception of lexical identity: A masked priming study of stem homographs. Journal of Memory & Language, 47(1), 125-144.
[5] Barber H., Dominguez A., & de Vega M . (2002). Human brain potentials indicate morphological decomposition in visual word recognition. Neuroscience Letters, 318(3), 149-152.
[6] Bentin S., Mouchetant-Rostaing Y., Giard M. H., Echallier J. F., & Pernier J . (1999). ERP manifestations of processing printed words at different psycholinguistic levels: Time course and scalp distribution. Journal of Cognitive Neuroscience, 11(3), 235-260.
[7] Beyersmann E., Coltheart M., & Castles A . (2012). Parallel processing of whole words and morphemes in visual word recognition. The Quarterly Journal of Experimental Psychology, 65(9), 1798-1819.
[8] Beyersmann E., Iakimova G., Ziegler J.C., & Colé P . (2014). Semantic processing during morphological priming: An ERP study. Brain Research, 1579, 45-55.
[9] Binder J. R., Medler D. A., Westbury C. F., Liebenthal E., & Buchanan L . (2006). Tuning of the human left fusiform gyrus to sublexical orthographic structure. Neuroimage, 33(2), 739-748.
[10] Burani C., & Caramazza A . (1987). Representation and processing of derived words. Language & Cognitive Processes, 2(3-4), 217-227.
[11] Carreiras M., Perdomo A., & Meseguer E . (2005). Are stem homographs and orthographic neighbours processed differently during silent reading? Language and Cognitive Processes, 20(1-2), 317-339.
[12] Chen B., Liu L., Wang L., Peng D., & Perfetti C. A . (2007). The timing of graphic, phonological and semantic activation of high and low frequency Chinese characters: An ERP study. Progress in Natural Science, 17(B07), 62-70.
[13] Chen B. G., & Peng D. L . (2001). The time course of graphic, phonological and semantic information processing in Chinese character recognition (I). Acta Psychologica Sinica, 33(1), 1-6.
[ 陈宝国, 彭聃龄 . (2001). 汉字识别中形音义激活时间进程的研究(I). 心理学报, 33(1), 1-6.]
[14] Chen B. G., Wang L. X., & Peng D. L . (2003). The time course of graphic, phonological and semantic information processing in Chinese character recognition (II). Acta Psychologica Sinica, 35(5), 576-581.
[ 陈宝国, 王立新, 彭聃龄 . (2003). 汉字识别中形音义激活时间进程的研究(II). 心理学报, 35(5), 576-581.]
[15] Crepaldi D., Rastle K., Coltheart M., & Nickels L . (2010). “Fell” primes“fall”, but does “bell” prime “ball”? Masked priming with irregularly inflected primes. Journal of Memory & Language, 63(1), 83-99.
[16] Dambacher M., Kliegl R., Hofmann M., & Jacobs A. M . (2006). Frequency and predictability effects on event-related potentials during reading. Brain Research, 1084(1), 89-103.
[17] Diependaele K., Sandra D., & Grainger J . (2005). Masked cross-modal morphological priming: Unravelling morpho- orthographic and morpho-semantic influences in early word recognition. Language and Cognitive Processes, 20(1-2), 75-114.
[18] Diependaele K., Sandra D., & Grainger J . (2009). Semantic transparency and masked morphological priming: The case of prefixed words. Memory & Cognition, 37(6), 895-908.
[19] Dominguez A., Cuetos F., & Segui J . (2002). The time course of inflexional morphological priming. Linguistics, 40(2), 235-259.
[20] Dominguez A., de Vega. M., & Barber H . (2004). Event- related brain potentials elicited by morphological, homographic, orthographic, and semantic priming. Journal of Cognitive Neuroscience, 16(4), 598-608.
[21] Feldman L. B., Kostić A., Gvozdenović V., O’Connor P. A., & Martín F. M. P . (2012). Semantic similarity influences early morphological priming in Serbian: A challenge to form-then-meaning accounts of word recognition. Psychonomic Bulletin and Review, 19(4), 668-676.
[22] Feldman L. B., O’Connor P. A., & Martín F. M. P . (2009). Early morphological processing is morphosemantic and not simply morpho-orthographic: A violation of from-then- meaning accounts of word recognition. Psychonomic Bulletin and Review, 16(4), 684-691.
[23] Ford M. A., Davis M. H., & Marslen-Wilson W. D . (2010). Derivational morphology and base morpheme frequency. Journal of Memory & Language, 63(1), 117-130.
[24] Forster K. I . (1998). The pros and cons of masked priming. Journal of Psycholinguistic Research, 27(2), 203-233.
[25] Giraudo H., & Grainger J . (2001). Priming complex words: Evidence for supralexical representation of morphology. Psychonomic Bulletin & Review, 8(1), 127-131.
[26] Giraudo H., & Grainger J . (2003). A supralexical model for French derivational morphology. In D. Sandra & H. Assink (Eds.), Reading complex words (pp. 139-157). Amsterdam, The Netherlands: Kluwer.
[27] Gonnerman L. M., Seidenberg M. S., & Andersen E. S . (2007). Graded semantic and phonological similarity effects in priming: Evidence for a distributed connectionist approach to morphology. Journal of Experimental Psychology: General, 136(2), 323-345.
[28] Grainger J., & Ziegler J. C . (2011). A dual-route approach to orthographic processing. Frontiers in Psychology, 2, 54-67.
[29] Grainger J., Kiyonaga K., & Holcomb P. J . (2006). The time course of orthographic and phonological code activation. Psychology Science, 17(12), 1021-1026.
[30] Hackley S. A., Woldorff M., & Hillyard S. A . (1990). Cross-modal selective attention effects on retinal, myogenic, brainstem, and cerebral evoked potentials. Psychophysiology, 27(2), 195-208.
[31] Jarvikivi J., Pyykkonen P., & Niemi J . (2009). Exploiting degrees of inflectional ambiguity: stem form and the time course of morphological processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 221-237.
[32] Kempen G., & Hoenkamp E . (1987). An incremental procedural grammar for sentence formulation. Cognitive Science, 11(2), 201-258.
[33] Kempen G., & Huijbers P . (1983). The lexicalization process in sentence production and naming: Indirect election of words. Cognition, 14(2), 185-209.
[34] Kiefer M., & Brendel D . (2006). Attentional modulation of unconscious “automatic” processes: Evidence from event-related potentials in a masked priming paradigm. Journal of Cognitive Neuroscience, 18(2), 184-198.
[35] Kong L., Zhang J. X., Kang C., Du Y., Zhang B., & Wang S . (2010). P200 and phonological processing in Chinese word recognition. Neuroscience Letters, 473(1), 37-41.
[36] Landi N., & Perfetti C. A . (2007). An electrophysiological investigation of semantic and phonological processing in skilled and less skilled comprehenders. Brain and Language, 102(1), 30-45.
[37] Laszlo S., & Federmeier K. D . (2007). Better the dvl you know: Acronyms reveal the contribution of familiarity to single-word reading. Psychological Science, 18(2), 122-126.
[38] Laudanna A., Badecker W., & Caramazza A . (1989). Priming homographic stems. Journal of Memory and Language, 28(5), 531-546.
[39] Laudanna A., Badecker W., & Caramazza A . (1992). Processing inflectional and derivational morphology. Journal of Memory and Language, 31(3), 333-348.
[40] Laudanna A., Voghera M., & Gazzellini S . (2002). Lexical representations of written nouns and verbs in Italian. Brain and Language, 81(1-3), 250-263.
[41] Lee C. Y., Tsai J. L., Chan W. H., Hsu C. H., Hung D., & Tzeng O . (2007). Temporal dynamics of the consistency effect in reading Chinese: An event-related potentials study. Neuroreport, 18(2), 147-151.
[42] Levelt W . (1989). Speaking: From intention to articulation. Cambridge, MA: MIT Press.
[43] Liu B., Jin Z., Qing Z., & Wang Z . (2011). The processing of phonological, orthographical, and lexical information of Chinese characters in sentence contexts: An ERP study. Brain Research, 1372, 81-91.
[44] Liu H., Zhang G., & Liu B . (2017). Semantic integration of audio-visual information of polyphonic characters in a sentence context: An event-related potential study. Experimental Brain Research, 235(4), 1119-1128.
[45] Liu Y., Perfetti C. A., & Hart L . (2003). ERP evidence for the time course of graphic, phonological, and semantic information in Chinese meaning and pronunciation decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(6), 1231-1247.
[46] Liu Y., Shu H., & Li P . (2007). Word naming and psycholinguistic norms: Chinese. Behavior Research Methods, 39(2), 192-198.
[47] Luck S. J., & Hillyard S. A . (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291-308.
[48] Marslen-Wilson W., Tyler L. K., Waksler R., & Older L . (1994). Morphology and meaning in the English mental lexicon. Psychological Review, 101(1), 3-33.
[49] Martin F. H., Kaine A., & Kirby M . (2006). Event-related brain potentials elicited during word recognition by adult good and poor phonological decoders. Brain and Language, 96(1), 1-13.
[50] McClelland J. L., & Rumelhart D. E . (1981). An interactive activation model of context effects in letter perception, Part I: An account of basic findings. Psychological Review, 88(5), 375-407.
[51] Meng X., Jian J., Shu H., Tian X., & Zhou X . (2008). ERP correlates of the development of orthographical and phonological processing during Chinese sentence reading. Brain Research, 1219, 91-102.
[52] Meunier F., & Longtin C. M . (2007). Morphological decomposition and semantic integration in word processing. Journal of Memory & Language, 56(4), 457-471.
[53] Meyler A., & Breznitz Z . (2005). Impaired phonological and orthographic word representations among adult dyslexic readers: Evidence from event-related potentials. The Journal of Genetic Psychology, 166(2), 215-240.
[54] Morris J., Frank T., Grainger J., & Holcomb P. J . (2007). Semantic transparency and masked morphological priming: An ERP investigation. Psychophysiology, 44(4), 506-521.
[55] Niznikiewicz M., & Squires N. K . (1996). Phonological processing and the role of strategy in silent reading: Behavioral and electrophysiological evidence. Brain and Language, 52(2), 342-364.
[56] Plaut D. C., & Booth J. R . (2000). Individual and developmental differences in semantic priming: Empirical and computational support for a single-mechanism account of lexical processing. Psychological Review, 107(4), 786-823.
[57] Rastle K., & Davis M. H . (2003). Reading morphologically complex words: Some thoughts from masked priming In S. Kinoshita & S. J. Lupker (Eds.), Masked Priming, the State of the Art (pp. 279-305). Hove, UK: Psychology Press.
[58] Rastle K., & Davis M. H . (2008). Morphological decomposition based on the analysis of orthography. Language & Cognitive Processes, 23(7-8), 942-971.
[59] Rastle K., Davis M. H., & New B . (2004). The broth in my brother’s brothel: Morpho-orthographic segmentation in visual word recognition. Psychonomic Bulletin and Review, 11(6), 1090-1098.
[60] Seidenberg M. S., & McClelland J. L . (1989). A distributed, developmental model of word recognition and naming. Psychological Review, 96(4), 523-568.
[61] Sereno S. C., Rayner K., & Posner M. I . (1998). Establishing a time-line of word recognition: Evidence from eye movements and event-related potentials. Neuroreport, 9(10), 2195-2200.
[62] Simon D. A., Lewis G., & Marantz A . (2012). Disambiguating form and lexical frequency effects in MEG responses using homonyms. Language and Cognitive Processes, 27(2), 275-287.
[63] Su I.-F., Mak S.-C. C., Cheung L.-Y. M., & Law S.-P . (2012). Taking a radical position: Evidence for position specific radical representations in Chinese character recognition using masked priming ERP. Frontiers in Psychology, 3, 333-344.
[64] Taft M . (1994). Interactive-activation as a framework for understanding morphological processing. Language & Cognitive Processes, 9(3), 271-294.
[65] Taft M . (2004). Morphological decomposition and the reverse base frequency effect. Journal of Experimental Psychology, 57(4), 745-765.
[66] Taft M., & Forster K. I . (1975). Lexical storage and retrieval of prefixed words. Journal of Verbal Learning & Verbal Behavior, 14(6), 638-647.
[67] Taft M., & Nguyen-Hoan M . (2010). A sticky stick? The locus of morphological representation in the lexicon. Language and Cognitive Processes, 25(2), 277-296.
[68] Tan L. H., & Peng D. L . (1991). Visual recognition processes of Chinese character: A research to the effect of grapheme and phoneme. Acta Psychologica Sinica, 23(3), 272-278.
[ 谭力海, 彭聃龄 . (1991). 汉字的视觉识别过程: 对形码和音码作用的考察. 心理学报, 23(3), 272-278.]
[69] Tan L. H., & Perfetti C. A . (1999). Phonological activation in visual identification of Chinese two-character words. Journal of Experimental Psychology: Learning Memory & Cognition, 25(2), 382-393.
[70] Tsang Y. K., & Chen H. C . (2010). Morphemic ambiguity resolution in Chinese: Activation of the subordinate meaning with a prior dominant-biased context. Psychonomic Bulletin and Review, 17(6), 875-881.
[71] Tsang Y. K., & Chen H. C . (2013a). Morpho-semantic processing in word recognition: evidence from balanced and biased ambiguous morphemes. Journal of Experimental Psychology: Learning Memory & Cognition, 39(6), 1990-2001.
[72] Tsang Y. K., & Chen H. C . (2013b). Early morphological processing is sensitive to morphemic meanings: Evidence from processing ambiguous morphemes. Journal of Memory & Language, 68(3), 223-239.
[73] Tsang Y. K., Wong A. W. K., Huang J., & Chen H. C . (2014). Morpho-orthographic and morpho-semantic processing in word recognition and production: Evidence from ambiguous morphemes. Language Cognition and Neuroscience, 29(5), 543-560.
[74] Wu Y., Tsang Y. K., Wong A. W. K., & Chen H. C . (2016). The processing of homographic morphemes in Chinese: An ERP study. Language Cognition & Neuroscience, 32(1), 102-116.
[75] Xu J., & Taft M . (2014). Solely soles: Inter-lemma competition in inflected word recognition. Journal of Memory and Language, 76, 127-140.
[76] Zhang Q., Zhang J. X., & Kong L . (2009). An ERP study on the time course of phonological and semantic activation in Chinese word recognition. International Journal of Psychophysiology, 73(3), 235-245.
[77] Zhang Q. F., & Yang Y. F . (2004). The time course of semantic, orthographic and phonological activation in Chinese word production. Acta Psychologica Sinica, 36(1), 1-8.
[ 张清芳, 杨玉芳 . (2004). 汉语词汇产生中语义、字形和音韵激活的时间进程. 心理学报, 36(1), 1-8.]
[78] Zhang Z., Zhang G., Zhang Y., Liu H., Xu J., & Liu B . (2017). Cross-modal integration of polyphonic characters in chinese audio-visual sentences: a mvpa study based on functional connectivity. Experimental Brain Research, 235(12), 3743-3755.
[79] Zhou L., Fong C. M., Minett J. W., Peng G., & Wang S. Y . (2014). Pre-lexical phonological processing in reading Chinese characters: An ERP study. Journal of Neurolinguistics, 30, 14-26.
[80] Zhou X. L., Marslen-Wilson W., Taft M., & Shu H . (1999). Morphology, orthography and phonology reading Chinese compound words. Language & Cognitive Processes, 14(5-6), 525-565.
[81] Ziegler J. C., Benraiss A., & Besson M . (1999). From print to meaning: An electrophysiological investigation of the role of phonology in accessing word meaning. Psychophysiology, 36(6), 775-785.
[82] Zou L., Desroches A. S., Liu Y., Xia Z., & Shu H . (2012). Orthographic facilitation in Chinese spoken word recognition: An ERP study. Brain and Language, 123(3), 164-173.
[83] Zou L., Packard J. L., Xia Z., Liu Y., & Shu H . (2019). Morphological and whole-word semantic processing are distinct: Event related potentials evidence from spoken word recognition in Chinese. Frontiers in Human Neuroscience, 13, 133-146.




[1]徐彩华, 宋凤宁, 张必隐, 李镗. 汉语儿童复合词构词意识的发展与阅读理解[J]. 心理学报, 2000, 32(增刊): 82-86.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4625
相关话题/中央 实验 心理 控制 信息