删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于即时反馈的反应抑制训练对青少年和成人执行功能的训练效应和迁移效应

本站小编 Free考研考试/2022-01-01

王元1, 李柯2, 盖笑松1(), 曹逸飞1
1东北师范大学心理学院, 长春 130024
2烟台文化旅游职业学院, 山东 烟台 264000
收稿日期:2019-08-16出版日期:2020-10-25发布日期:2020-08-24
通讯作者:盖笑松E-mail:gaixs669@nenu.edu.cn

基金资助:* 教育部人文社会科学研究青年基金项目(17YJC190025);东北师范大学哲学社会科学校内青年基金青年团队项目(中央高校基本科研业务费专项资金)(18QT008)

Training and transfer effects of response inhibition training with online feedback on adolescents and adults’ executive function

WANG Yuan1, LI Ke2, GAI Xiaosong1(), CAO Yifei1
1School of Psychology, Northeast Normal University, Changchun 130024, China
2Yantai Vocational College of Culture and Tourism, Yantai 264000, China
Received:2019-08-16Online:2020-10-25Published:2020-08-24
Contact:GAI Xiaosong E-mail:gaixs669@nenu.edu.cn






摘要/Abstract


摘要: 本研究以基于即时反馈的Stop Signal范式为训练任务, 考察3周训练是否对青少年和成人的执行功能产生训练效应和迁移效应。发现青少年、成人实验组和积极控制组都出现了训练效应。两个实验组均产生了对反应抑制Go/No-go任务的迁移效应; 但只有青少年实验组出现了对干扰抑制Stroop任务的迁移效应。成人实验组和积极控制组都出现了对2-back任务的迁移效应; 但只有青少年实验组出现了在2-和3-back任务上的迁移效应。所有组别都未能出现对推理能力的迁移。研究证明从青春期到成年期, 基于即时反馈的反应抑制训练能够对执行功能产生训练和迁移效应, 但迁移仅限于抑制和工作记忆等基础成分, 无法改善推理能力。



图1有反馈的自适应步速Stop Signal任务流程图
图1有反馈的自适应步速Stop Signal任务流程图


表1四个训练组每日Stop Signal任务训练效应的描述统计
训练日期 成人实验组 成人积极组 青少年实验组 青少年积极组
SSRT (ms) 正确率(%) SSRT (ms) 正确率(%) SSRT (ms) 正确率(%) SSRT (ms) 正确率(%)
D1 156.09 (30.00) 0.58 (0.08) 156.88 (29.35) 0.58 (0.07) 161.28 (24.51) 0.53 (0.06) 166.35 (23.49) 0.51 (0.07)
D2 146.40 (24.64) 0.62 (0.10) 145.50 (26.40) 0.63 (0.09) 158.78 (20.38) 0.55 (0.08) 163.32 (17.41) 0.52 (0.06)
D3 140.15 (23.16) 0.66 (0.11) 136.39 (20.08) 0.64 (0.10) 156.75 (10.49) 0.59 (0.08) 162.76 (20.90) 0.53 (0.07)
D4 134.66 (20.17) 0.67 (0.13) 133.41 (19.71) 0.67 (0.10) 150.52 (22.73) 0.65 (0.07) 158.45 (22.29) 0.52 (0.07)
D5 126.56 (19.21) 0.69 (0.10) 130.40 (19.36) 0.67 (0.10) 142.43 (17.80) 0.76 (0.09) 160.78 (19.99) 0.55 (0.08)
D6 123.12 (16.30) 0.72 (0.10) 132.49 (19.03) 0.64 (0.09) 141.25 (22.66) 0.74 (0.09) 155.28 (21.63) 0.59 (0.09)
D7 119.79 (21.32) 0.73 (0.10) 126.86 (25.74) 0.65 (0.09) 140.56 (25.29) 0.77 (0.09) 160.55 (19.88) 0.61 (0.07)
D8 116.74 (16.12) 0.75 (0.10) 122.79 (23.14) 0.66 (0.11) 134.10 (25.97) 0.78 (0.06) 162.68 (17.82) 0.57 (0.08)
D9 109.49 (20.65) 0.78 (0.10) 124.24 (19.66) 0.65 (0.11) 125.94 (24.90) 0.82 (0.08) 162.94 (19.15) 0.54 (0.08)

表1四个训练组每日Stop Signal任务训练效应的描述统计
训练日期 成人实验组 成人积极组 青少年实验组 青少年积极组
SSRT (ms) 正确率(%) SSRT (ms) 正确率(%) SSRT (ms) 正确率(%) SSRT (ms) 正确率(%)
D1 156.09 (30.00) 0.58 (0.08) 156.88 (29.35) 0.58 (0.07) 161.28 (24.51) 0.53 (0.06) 166.35 (23.49) 0.51 (0.07)
D2 146.40 (24.64) 0.62 (0.10) 145.50 (26.40) 0.63 (0.09) 158.78 (20.38) 0.55 (0.08) 163.32 (17.41) 0.52 (0.06)
D3 140.15 (23.16) 0.66 (0.11) 136.39 (20.08) 0.64 (0.10) 156.75 (10.49) 0.59 (0.08) 162.76 (20.90) 0.53 (0.07)
D4 134.66 (20.17) 0.67 (0.13) 133.41 (19.71) 0.67 (0.10) 150.52 (22.73) 0.65 (0.07) 158.45 (22.29) 0.52 (0.07)
D5 126.56 (19.21) 0.69 (0.10) 130.40 (19.36) 0.67 (0.10) 142.43 (17.80) 0.76 (0.09) 160.78 (19.99) 0.55 (0.08)
D6 123.12 (16.30) 0.72 (0.10) 132.49 (19.03) 0.64 (0.09) 141.25 (22.66) 0.74 (0.09) 155.28 (21.63) 0.59 (0.09)
D7 119.79 (21.32) 0.73 (0.10) 126.86 (25.74) 0.65 (0.09) 140.56 (25.29) 0.77 (0.09) 160.55 (19.88) 0.61 (0.07)
D8 116.74 (16.12) 0.75 (0.10) 122.79 (23.14) 0.66 (0.11) 134.10 (25.97) 0.78 (0.06) 162.68 (17.82) 0.57 (0.08)
D9 109.49 (20.65) 0.78 (0.10) 124.24 (19.66) 0.65 (0.11) 125.94 (24.90) 0.82 (0.08) 162.94 (19.15) 0.54 (0.08)



图2Stop Signal任务训练进程图
图2Stop Signal任务训练进程图


表2各任务在两次测量时间上迁移效应的描述统计结果
任务及指标 测量时间点 成人实验组 成人积极控制组 青少年实验组 青少年积极控制组 消极控制组
Go/No-go
反应时
前测 340.33 (19.49) 341.51 (41.78) 348.60 (36.95) 349.92 (52.99) 340.44 (26.82)
后测 316.94 (26.35) 337.39 (37.57) 323.91 (49.64) 337.23 (39.88) 338.43 (26.95)
Go/No-go
正确率
前测 0.89 (0.07) 0.85 (0.11) 0.79 (0.11) 0.77 (0.09) 0.87 (0.11)
后测 0.97 (0.02) 0.87 (0.09) 0.92 (0.44) 0.80 (0.05) 0.88 (0.11)
Go/No-go
d′
前测 0.83 (0.15) 0.84 (0.14) 0.75 (0.12) 0.73 (0.08) 0.83 (0.06)
后测 0.91 (0.06) 0.86 (0.11) 0.87 (0.05) 0.77 (0.06) 0.81 (0.04)
Stroop效应 前测 32.83 (24.06) 32.54 (26.10) 65.16 (28.95) 69.07 (24.65) 33.42 (28.13)
后测 30.04 (28.99) 34.50 (33.25) 44.81 (19.08) 66.54 (23.40) 32.01 (27.33)
2-Back
正确率
前测 0.71 (0.06) 0.71 (0.06) 0.63 (0.05) 0.61 (0.04) 0.71 (0.03)
后测 0.73 (0.05) 0.75 (0.05) 0.77 (0.04) 0.63 (0.04) 0.72 (0.06)
3-Back
正确率
前测 0.61 (0.07) 0.63 (0.08) 0.53 (0.04) 0.52 (0.05) 0.63 (0.03)
后测 0.64 (0.05) 0.65 (0.06) 0.59 (0.04) 0.55 (0.04) 0.64 (0.03)
瑞文推理测验
正确率
前测 0.80 (0.11) 0.83 (0.10) 0.82 (0.10) 0.85 (0.09) 0.78 (0.11)
后测 0.80 (0.11) 0.81 (0.10) 0.79 (0.09) 0.79 (0.10) 0.79 (0.10)

表2各任务在两次测量时间上迁移效应的描述统计结果
任务及指标 测量时间点 成人实验组 成人积极控制组 青少年实验组 青少年积极控制组 消极控制组
Go/No-go
反应时
前测 340.33 (19.49) 341.51 (41.78) 348.60 (36.95) 349.92 (52.99) 340.44 (26.82)
后测 316.94 (26.35) 337.39 (37.57) 323.91 (49.64) 337.23 (39.88) 338.43 (26.95)
Go/No-go
正确率
前测 0.89 (0.07) 0.85 (0.11) 0.79 (0.11) 0.77 (0.09) 0.87 (0.11)
后测 0.97 (0.02) 0.87 (0.09) 0.92 (0.44) 0.80 (0.05) 0.88 (0.11)
Go/No-go
d′
前测 0.83 (0.15) 0.84 (0.14) 0.75 (0.12) 0.73 (0.08) 0.83 (0.06)
后测 0.91 (0.06) 0.86 (0.11) 0.87 (0.05) 0.77 (0.06) 0.81 (0.04)
Stroop效应 前测 32.83 (24.06) 32.54 (26.10) 65.16 (28.95) 69.07 (24.65) 33.42 (28.13)
后测 30.04 (28.99) 34.50 (33.25) 44.81 (19.08) 66.54 (23.40) 32.01 (27.33)
2-Back
正确率
前测 0.71 (0.06) 0.71 (0.06) 0.63 (0.05) 0.61 (0.04) 0.71 (0.03)
后测 0.73 (0.05) 0.75 (0.05) 0.77 (0.04) 0.63 (0.04) 0.72 (0.06)
3-Back
正确率
前测 0.61 (0.07) 0.63 (0.08) 0.53 (0.04) 0.52 (0.05) 0.63 (0.03)
后测 0.64 (0.05) 0.65 (0.06) 0.59 (0.04) 0.55 (0.04) 0.64 (0.03)
瑞文推理测验
正确率
前测 0.80 (0.11) 0.83 (0.10) 0.82 (0.10) 0.85 (0.09) 0.78 (0.11)
后测 0.80 (0.11) 0.81 (0.10) 0.79 (0.09) 0.79 (0.10) 0.79 (0.10)



图3因训练发生迁移效应的各任务成绩变化趋势图
图3因训练发生迁移效应的各任务成绩变化趋势图







[1] Ambrosi, S., Lemaire, P., & Blaye, A. (2016). Do young children modulate their cognitive control? Sequential congruency effects across three conflict tasks in 5-to-6 year-olds. Experimental Psychology, 63(2), 117-126.
doi: 10.1027/1618-3169/a000320URLpmid: 27221602
[2] Ambrosi, S., Servant, M., Blaye, A., & Burle, B. (2019). Conflict processing in kindergarten children: New evidence from distribution analyses reveals the dynamics of incorrect response activation and suppression. Journal of Experimental Child Psychology, 177(1), 36-52.
doi: 10.1016/j.jecp.2018.06.006URL
[3] Anderson, P. (2002). Assessment and development of executive function (EF) during childhood. Child Neuropsychology, 8(2), 71-82.
doi: 10.1076/chin.8.2.71.8724URLpmid: 12638061
[4] Anderson, V. A., Anderson, P., Northam, E., Jacobs, R., & Catroppa, C. (2001). Development of executive functions through late childhood and adolescence in an Australian sample. Developmental Neuropsychology, 20(1), 385-406.
doi: 10.1207/S15326942DN2001_5URLpmid: 11827095
[5] Bellaj, T., Salhi, I., le Gall, D., & Roy, A. (2015). Development of executive functioning in school-age Tunisian children. Child Neuropsychology, 22(8), 1-36.
doi: 10.1080/09297049.2014.969694URL
[6] Best, J. R., & Miller, P. H. (2010). A developmental perspective on executive function. Child Development, 81(6), 1641-1660.
doi: 10.1111/j.1467-8624.2010.01499.xURLpmid: 21077853
[7] Boehler, C. N., Appelbaum, L. G., Krebs, R. M., Hopf, J. M., & Woldorff, M. G. (2012). The influence of different stop-signal response time estimation procedures on behavior-behavior and brain-behavior correlations. Behavioural Brain Research, 229(1), 123-130.
doi: 10.1016/j.bbr.2012.01.003URL
[8] Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387-398.
doi: 10.1016/j.actpsy.2008.09.005URLpmid: 18929349
[9] Brodeur, D. A., & Pond, M. (2001). The development of selective attention in children with attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 29(3), 229-239.
doi: 10.1023/A:1010381731658URL
[10] Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547-552.
doi: 10.1016/j.tics.2003.10.005URLpmid: 14643371
[11] Dahlin, K. I. E. (2013). Working memory training and the effect on mathematical achievement in children with attention deficits and special needs. Journal of Education & Learning, 2(1), 118-133.
[12] de Jong, R., Coles, M. G. H., & Logan, G. D. (1995). Strategies and mechanisms in nonselective and selective inhibitory motor control. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 498-511.
doi: 10.1037//0096-1523.21.3.498URLpmid: 7790830
[13] Denckla, M. B. (1996). A theory and model of executive function: A neuropsychological perspective. Baltimore, MD, US: Paul H Brookes Publishing, 263-278.
[14] Diamond, A. (1985). Development of the ability to use recall to guide action, as indicated by infants’ performance on ab?. Child Development, 56(4), 868-883.
URLpmid: 4042750
[15] Diamond, A. (1996). Evidence for the importance of dopamine for prefrontal cortex functions early in life. Philosophical Transactions of the Royal Society B: Biological Sciences, 351(1346), 1483-1494.
doi: 10.1098/rstb.1996.0134URL
[16] Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135-168.
doi: 10.1146/annurev-psych-113011-143750URL
[17] Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333(6045), 959-964.
doi: 10.1126/science.1204529URLpmid: 21852486
[18] Diamond, A., & Ling, D. S. (2015). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, 18(4), 34-48.
doi: 10.1016/j.dcn.2015.11.005URL
[19] Dowsett, S. M., & Livesey, D. J. (2015). The development of inhibitory control in preschool children: Effects of "executive skills" training. Developmental Psychobiology, 36(2), 161-174.
doi: 10.1002/(sici)1098-2302(200003)36:2<161::aid-dev7>3.0.co;2-0URLpmid: 10689286
[20] Enge, S., Behnke, A., Fleischhauer, M., Küttler, L., Kliegel, M., & Strobel, A. (2014). No evidence for true training and transfer effects after inhibitory control training in young healthy adults. Journal of Experimental Psychology: Learning Memory and Cognition, 40(4), 987-1001.
doi: 10.1037/a0036165URL
[21] Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143-149.
doi: 10.1068/p160143URL
[22] Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent- variable analysis. Journal of Experimental Psychology: General, 133(1), 101-135.
doi: 10.1037/0096-3445.133.1.101URL
[23] Gaultney, J. F., Bjorklund, D. F., & Goldstein, D. (1996). To be young, gifted, and strategic: Advantages for memory performance. Journal of Experimental Child Psychology, 61(1), 43-66.
doi: 10.1006/jecp.1996.0002URL
[24] Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316-322.
doi: 10.1038/nn1014URLpmid: 12592404
[25] Guerrieri, R., Nederkoorn, C., & Jansen, A. (2008). The interaction between impulsivity and a varied food environment: Its influence on food intake and overweight. International journal of obesity, 32(4), 708-714.
doi: 10.1038/sj.ijo.0803770URLpmid: 18059403
[26] Hare, T. A., & Casey, B. J. (2005). The neurobiology and development of cognitive and affective control. Brain, IX(3), 273-286.
[27] Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829-6833.
doi: 10.1073/pnas.0801268105URL
[28] Ji, Y., Wang, J., Chen, T., Du, X., & Zhan, Y. (2016). Plasticity of inhibitory processes and associated far-transfer effects in older adults. Psychology & Aging, 31(5), 415-429.
doi: 10.1037/pag0000102URLpmid: 27243762
[29] Johnstone, S. J., Dimoska, A., Smith, J. L., Barry, R., Pleffer, C. B., Chiswick, D., & Clarke, A. R. (2007). The development of stop-signal and Go/Nogo response inhibition in children aged 7-12 years: Performance and event-related potential indices. International Journal of Psychophysiology, 63(1), 25-38.
URLpmid: 16919346
[30] Jongen, E. M. M., & Jonkman, L. M. (2008). The developmental pattern of stimulus and response interference in a color-object Stroop task: An ERP study. BMC Neuroscience, 9(1), 1-24.
doi: 10.1186/1471-2202-9-1URL
[31] Karatekin, C. (2004). Development of attentional allocation in the dual task paradigm. International Journal of Psychophysiology, 52(1), 7-21.
doi: 10.1016/j.ijpsycho.2003.12.002URLpmid: 15003369
[32] Karbach, J., & Kray, J. (2010). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12(6), 978-990.
doi: 10.1111/j.1467-7687.2009.00846.xURLpmid: 19840052
[33] Kohls, G., Peltzer, J., Herpertz-dahlmann, B., & Konrad, K. (2010). Differential effects of social and non-social reward on response inhibition in children and adolescents. Developmental Science, 12(4), 614-625.
URLpmid: 19635087
[34] Kornblum, S. (1992). Dimensional overlap and dimensional relevance in stimulus-response and stimulus-stimulus compatibility. In G. E. Stelmach & J. Requin (Eds.), Tutorials in motor behavior (Vol. 2, pp.743-777). Amsterdam: North-Holland.
[35] Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility--a model and taxonomy. Psychological Review, 97(2), 253-270.
URLpmid: 2186425
[36] Kornblum, S., Stevens, G. T., Whipple, A., & Requin, J. (1999). The effects of irrelevant stimuli: The time course of stimulus-stimulus and stimulus-response consistency effects with Stroop-like stimuli, Simon-like tasks, and their factorial combinations. Journal of Experimental Psychology: Human Perception and Performance, 25(3), 688-714.
[37] Leotti, L. A., & Wager, T. D. (2010). Motivational influences on response inhibition measures. Journal of Experimental Psychology: Human Perception and Performance, 36(2), 430-447.
URLpmid: 20364928
[38] Littman, K. L. (2015). Reinforcement learning improves behaviour from evaluative feedback. Nature, 521(7553), 445-451.
doi: 10.1038/nature14540URLpmid: 26017443
[39] Liu, X. Y., Liu, T. R., Shangguan, F. F., S?rensen, T. A., Liu, Q., & Shi, J. (2018). Neurodevelopment of conflict adaptation: Evidence from event-related potentials. Developmental Psychology, 54(7), 1347-1362.
URLpmid: 29756794
[40] Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91(3), 295-327.
[41] Loosli, S. V., Falquez, R., Unterrainer, J. M., Weiller, C., Rahm, B., & Kaller, C. P. (2016). Training of resistance to proactive interference and working memory in older adults: A randomized double-blind study. International Psychogeriatrics, 28(3), 453-467.
doi: 10.1017/S1041610215001519URLpmid: 26478277
[42] Maraver, M. J., Bajo, M. T., & Gomez-Ariza, C. J. (2016). Training on working memory and inhibitory control in young adults. Frontiers in Human Neuroscience, 10(11), 1-18.
[43] Melanko, S., & Larkin, K. T. (2013). Preference for immediate reinforcement over delayed reinforcement: Relation between delay discounting and health behavior. Journal of Behavioral Medicine, 36(1), 34-43.
doi: 10.1007/s10865-012-9399-zURLpmid: 22311103
[44] Melby-Lerv?g, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer”: Evidence from a meta-analytic review. Perspectives on Psychological Science, 11(4), 512-534.
doi: 10.1177/1745691616635612URLpmid: 27474138
[45] Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100.
URLpmid: 10945922
[46] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M., … Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.
doi: 10.1038/nature14236URLpmid: 25719670
[47] Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., … Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences, 108(7), 2693-2698.
[48] Monk, C. S., Mcclure, E. B., Nelson, E. E., Zarahn, E., Bilder, R. M., Leibenluft, E., … Pin, D. S. (2003). Adolescent immaturity in attention-related brain engagement to emotional facial expressions. Neuroimage, 20(1), 420-428.
URLpmid: 14527602
[49] Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin & Review, 18(1), 46-60.
doi: 10.3758/s13423-010-0034-0URLpmid: 21327348
[50] Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective & Behavioral Neuroscience, 7(1), 1-17.
doi: 10.3758/cabn.7.1.1URLpmid: 17598730
[51] Raven, J., Raven, J. C., & Court, J. H. (2000). Standard progressive matrices. Oxford: Psychology Press.
[52] Rueda, M. R., Rothbart, M. K., Mccandliss, B. D., Saccomanno, L., & Posner, M. I. (2005). Training, maturation, and genetic influences on the development of executive attention. Proceedings of the National Academy of Sciences, 102(41), 14931-14936.
[53] Shilling, V. M., Chetwynd, A., & Rabbitt, P. M. A. (2002). Individual inconsistency across measures of inhibition: An investigation of the construct validity of inhibition in older adults. Neuropsychologia, 40(6), 605-619.
doi: 10.1016/s0028-3932(01)00157-9URLpmid: 11792402
[54] Spierer, L., Chavan, C. F., & Manuel, A. L. (2013). Training- induced behavioral and brain plasticity in inhibitory control. Frontiers in Human Neuroscience, 7, 427.
URLpmid: 23914169
[55] Strobach, T., Salminen, T., Karbach, J., & Schubert, T. (2014). Practice-related optimization and transfer of executive functions: A general review and a specific realization of their mechanisms in dual tasks. Psychological Research, 78(6), 836-851.
doi: 10.1007/s00426-014-0563-7URLpmid: 24668506
[56] Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology: General, 18(6), 643-662.
[57] Thorell, L. B., Lindqvist, S., Nutley, S. B., Bohlin, G., & Klingberg, T. (2009). Training and transfer effects of executive functions in preschool children. Developmental Science, 12(1), 106-113.
URLpmid: 19120418
[58] van Boxtel, G. J. M., van der Molen, M. W., Jennings, J. R., & Brunia, C. H. M. (2001). A psychophysiological analysis of inhibitory motor control in the stop-signal paradigm. Biological Psychology, 58(3), 229-262.
URLpmid: 11698116
[59] Verbruggen, F., Liefooghe, B., & Vandierendonck, A. (2004). The interaction between stop signal inhibition and distractor interference in the flanker and stroop task. Acta Psychologica, 116(1), 21-37.
doi: 10.1016/j.actpsy.2003.12.011URLpmid: 15111228
[60] Verbruggen, F., & Logan, G. D. (2008). Automatic and controlled response inhibition: Associative learning in the go/no-go and stop-signal paradigms. Journal of Experimental Psychology: General, 137(4), 649-672.
doi: 10.1037/a0013170URL
[61] Wilkinson, A. J., & Yang, L. X. (2012). Plasticity of inhibition in older adults: Retest practice and transfer effects. Psychology and Aging, 27(3), 606-615.
doi: 10.1037/a0025926URLpmid: 22182362
[62] Williams, B. R. G., Ponesse, J. S., Schachar, R. J., Logan, G. D., & Tannock, R. (1999). Development of inhibitory control across the life span. Developmental Psychology, 35(1), 205-213.
doi: 10.1037//0012-1649.35.1.205URLpmid: 9923475
[63] Zhao, X., Chen, L., & Maes, J. H. R. (2018). Training and transfer effects of response inhibition training in children and adults. Developmental Science, 21(1), e12511.
doi: 10.1111/desc.12489URLpmid: 27753220
[64] Zhao, X., & Jia, L. (2019). Training and transfer effects of interference control training in children and young adults. Psychological Research, 83(7), 1519-1530.
doi: 10.1007/s00426-018-1007-6URLpmid: 29691649




[1]何晓丽, 袁小龙, 胡铭, 周丽晨. 父母元情绪理念与青少年问题行为:迷走神经的调节作用[J]. 心理学报, 2020, 52(8): 971-981.
[2]常淑敏, 郭明宇, 王靖民, 王玲晓, 张文新. 学校资源对青少年早期幸福感发展的影响:意向性自我调节的纵向中介作用[J]. 心理学报, 2020, 52(7): 874-885.
[3]赵鑫,李红利,金戈,李世峰,周爱保,梁文佳,郭红霞,蔡亚亚. 语音记忆和中央执行功能在不同年级儿童解码和语言理解中的作用[J]. 心理学报, 2020, 52(4): 469-484.
[4]陈曦梅,罗一君,陈红. 友谊质量与青少年直觉进食:链式中介模型及性别差异[J]. 心理学报, 2020, 52(4): 485-496.
[5]田相娟, 曹衍淼, 张文新. 母亲消极教养、同伴侵害与FKBP5基因对青少年抑郁的影响[J]. 心理学报, 2020, 52(12): 1407-1406.
[6]王婷,植凤英,陆禹同,张积家. 侗歌经验对侗族中学生执行功能的影响[J]. 心理学报, 2019, 51(9): 1040-1056.
[7]李泉,宋亚男,廉彬,冯廷勇. 正念训练提升3~4岁幼儿注意力和执行功能[J]. 心理学报, 2019, 51(3): 324-336.
[8]曹衍淼, 张文新. 多巴胺系统基因与母亲教养行为对青少年抑郁的影响:一项多基因研究[J]. 心理学报, 2019, 51(10): 1102-1115.
[9]胡金生, 李骋诗, 王琦, 李松泽, 李涛涛, 刘淑清. 孤独症青少年的情绪韵律注意偏向缺陷:低效率的知觉模式[J]. 心理学报, 2018, 50(6): 637-646.
[10]邢淑芬,李倩倩,高鑫,马园园,傅锐. 不同睡眠时间参数对学前儿童执行功能的差异化影响[J]. 心理学报, 2018, 50(11): 1269-1281.
[11]田录梅, 袁竞驰, 李永梅. 同伴在场和自尊水平对青少年冒险行为的影响:来自ERPs的证据[J]. 心理学报, 2018, 50(1): 47-57.
[12]邢强, 孙海龙, 占丹玲, 胡婧, 刘凯. 执行功能对言语顿悟问题解决的影响: 基于行为与ERPs的研究[J]. 心理学报, 2017, 49(7): 909-919.
[13]连帅磊, 孙晓军, 牛更枫, 周宗奎. 社交网站中的上行社会比较与抑郁的关系: 一个有调节的中介模型及性别差异[J]. 心理学报, 2017, 49(7): 941-952.
[14]杨海波;赵欣;汪洋;张磊;王瑞萌; 张毅;王力. PTSD青少年执行功能缺陷的情绪特异性[J]. 心理学报, 2017, 49(5): 643-652.
[15]刘庆奇, 周宗奎, 牛更枫, 范翠英. 手机成瘾与青少年睡眠质量: 中介与调节作用分析[J]. 心理学报, 2017, 49(12): 1524-1536.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4809
相关话题/青少年 心理 统计 测量 成绩