1 江西师范大学心理学院, 南昌 330022
2 贵州师范大学心理学院, 贵阳 550000
收稿日期:
2018-12-14出版日期:
2020-01-25发布日期:
2019-11-21通讯作者:
涂冬波E-mail:tudongbo@aliyun.com基金资助:
* 国家自然科学基金(31660278);国家自然科学基金(31760288);国家自然科学基金(31960186);江西省教育厅研究生创新基金(YC2018-B025);江西师范大学研究生境内外访学项目的资助A method of Q-matrix validation for polytomous response cognitive diagnosis model based on relative fit statistics
WANG Daxun1, GAO Xuliang2, CAI Yan1, TU Dongbo1()1 School of Psychology, Jiangxi Normal University, Nanchang 330022, China
2 School of Psychology, Guizhou Normal University, Guiyang 550000, China
Received:
2018-12-14Online:
2020-01-25Published:
2019-11-21Contact:
TU Dongbo E-mail:tudongbo@aliyun.com摘要/Abstract
摘要: 多级计分认知诊断模型的开发对认知诊断的发展具有重要作用, 但对于多级计分模型下的Q矩阵修正还有待研究。本研究尝试对多级计分认知诊断Q矩阵修正进行研究, 并聚焦更具诊断价值的基于项目类别水平的Q矩阵修正。将相对拟合统计量应用于多级计分认知诊断Q矩阵修正, 并与已有方法Stepwise方法(
图/表 9
表1测验Q矩阵
题目 | 类别 | A1 | A2 | A3 | A4 | A5 | 题目 | 类别 | A1 | A2 | A3 | A4 | A5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 0 | 0 | 0 | 0 | 11 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 2 | 0 | 1 | 0 | 0 | 0 | 11 | 2 | 0 | 0 | 0 | 0 | 1 |
2 | 1 | 0 | 0 | 1 | 0 | 0 | 12 | 1 | 1 | 1 | 1 | 0 | 0 |
2 | 2 | 0 | 0 | 0 | 1 | 0 | 12 | 2 | 0 | 0 | 0 | 1 | 1 |
3 | 1 | 0 | 0 | 0 | 0 | 1 | 13 | 1 | 1 | 1 | 0 | 0 | 0 |
3 | 2 | 1 | 0 | 0 | 0 | 0 | 13 | 2 | 0 | 0 | 1 | 1 | 1 |
4 | 1 | 0 | 0 | 0 | 0 | 1 | 14 | 1 | 1 | 0 | 1 | 0 | 0 |
4 | 2 | 0 | 0 | 0 | 1 | 0 | 14 | 2 | 0 | 0 | 0 | 1 | 0 |
5 | 1 | 0 | 0 | 1 | 0 | 0 | 14 | 3 | 0 | 0 | 0 | 0 | 1 |
5 | 2 | 0 | 1 | 0 | 0 | 0 | 15 | 1 | 0 | 0 | 0 | 0 | 1 |
6 | 1 | 1 | 0 | 0 | 0 | 0 | 15 | 2 | 0 | 0 | 1 | 1 | 0 |
6 | 2 | 0 | 1 | 1 | 0 | 0 | 15 | 3 | 0 | 1 | 0 | 0 | 0 |
7 | 1 | 0 | 0 | 1 | 0 | 0 | 16 | 1 | 1 | 0 | 0 | 0 | 0 |
7 | 2 | 0 | 0 | 0 | 1 | 1 | 16 | 2 | 0 | 1 | 0 | 0 | 0 |
8 | 1 | 0 | 0 | 0 | 0 | 1 | 16 | 3 | 0 | 0 | 1 | 1 | 0 |
8 | 2 | 1 | 1 | 0 | 0 | 0 | 17 | 1 | 1 | 0 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 0 | 1 | 1 | 18 | 1 | 0 | 1 | 0 | 0 | 0 |
9 | 2 | 0 | 0 | 1 | 0 | 0 | 19 | 1 | 0 | 0 | 1 | 0 | 0 |
10 | 1 | 0 | 1 | 0 | 1 | 0 | 20 | 1 | 0 | 0 | 0 | 1 | 0 |
10 | 2 | 1 | 0 | 0 | 0 | 0 | 21 | 1 | 0 | 0 | 0 | 0 | 1 |
表1测验Q矩阵
题目 | 类别 | A1 | A2 | A3 | A4 | A5 | 题目 | 类别 | A1 | A2 | A3 | A4 | A5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 0 | 0 | 0 | 0 | 11 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 2 | 0 | 1 | 0 | 0 | 0 | 11 | 2 | 0 | 0 | 0 | 0 | 1 |
2 | 1 | 0 | 0 | 1 | 0 | 0 | 12 | 1 | 1 | 1 | 1 | 0 | 0 |
2 | 2 | 0 | 0 | 0 | 1 | 0 | 12 | 2 | 0 | 0 | 0 | 1 | 1 |
3 | 1 | 0 | 0 | 0 | 0 | 1 | 13 | 1 | 1 | 1 | 0 | 0 | 0 |
3 | 2 | 1 | 0 | 0 | 0 | 0 | 13 | 2 | 0 | 0 | 1 | 1 | 1 |
4 | 1 | 0 | 0 | 0 | 0 | 1 | 14 | 1 | 1 | 0 | 1 | 0 | 0 |
4 | 2 | 0 | 0 | 0 | 1 | 0 | 14 | 2 | 0 | 0 | 0 | 1 | 0 |
5 | 1 | 0 | 0 | 1 | 0 | 0 | 14 | 3 | 0 | 0 | 0 | 0 | 1 |
5 | 2 | 0 | 1 | 0 | 0 | 0 | 15 | 1 | 0 | 0 | 0 | 0 | 1 |
6 | 1 | 1 | 0 | 0 | 0 | 0 | 15 | 2 | 0 | 0 | 1 | 1 | 0 |
6 | 2 | 0 | 1 | 1 | 0 | 0 | 15 | 3 | 0 | 1 | 0 | 0 | 0 |
7 | 1 | 0 | 0 | 1 | 0 | 0 | 16 | 1 | 1 | 0 | 0 | 0 | 0 |
7 | 2 | 0 | 0 | 0 | 1 | 1 | 16 | 2 | 0 | 1 | 0 | 0 | 0 |
8 | 1 | 0 | 0 | 0 | 0 | 1 | 16 | 3 | 0 | 0 | 1 | 1 | 0 |
8 | 2 | 1 | 1 | 0 | 0 | 0 | 17 | 1 | 1 | 0 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 0 | 1 | 1 | 18 | 1 | 0 | 1 | 0 | 0 | 0 |
9 | 2 | 0 | 0 | 1 | 0 | 0 | 19 | 1 | 0 | 0 | 1 | 0 | 0 |
10 | 1 | 0 | 1 | 0 | 1 | 0 | 20 | 1 | 0 | 0 | 0 | 1 | 0 |
10 | 2 | 1 | 0 | 0 | 0 | 0 | 21 | 1 | 0 | 0 | 0 | 0 | 1 |
表2Q矩阵错误类型
Q | Q矩阵错误模拟规则 | 调整的类别 | 调整的属性个数 | 备注 |
---|---|---|---|---|
Q1 | ${{q}_{jk}}=0\to {{q}_{jk}}=1$ | $K_{jh}^{*}=1$的类别 | 5 | 属性冗余 |
Q2 | ${{q}_{jk}}=1\to {{q}_{jk}}=0$ | $K_{jh}^{*}>2$的类别 | 5 | 属性缺失 |
Q3 | ${{q}_{jk}}=0\to {{q}_{jk}}=1,{{q}_{j{k}'}}=1\to {{q}_{j{k}'}}=0$ | $K_{jh}^{*}>2$的类别 | 10 | 属性既冗余又缺失 |
Q4 | ${{q}_{jk}}=0\to {{q}_{jk}}=1$ ${{q}_{jk}}=1\to {{q}_{jk}}=0$${{q}_{jk}}=0\to {{q}_{jk}}=1\text{ }{{q}_{j{k}'}}=1\to {{q}_{j{k}'}}=0$ | 分别为Q1、Q2和Q3的类别 | 20 | Q1、Q2和Q3的组合 |
Q5 | 10%随机调整 | 随机 | 20 | 调整后$1<K_{jh}^{*}<3$ |
Q6 | 20%随机调整 | 随机 | 40 | 调整后$1<K_{jh}^{*}<3$ |
表2Q矩阵错误类型
Q | Q矩阵错误模拟规则 | 调整的类别 | 调整的属性个数 | 备注 |
---|---|---|---|---|
Q1 | ${{q}_{jk}}=0\to {{q}_{jk}}=1$ | $K_{jh}^{*}=1$的类别 | 5 | 属性冗余 |
Q2 | ${{q}_{jk}}=1\to {{q}_{jk}}=0$ | $K_{jh}^{*}>2$的类别 | 5 | 属性缺失 |
Q3 | ${{q}_{jk}}=0\to {{q}_{jk}}=1,{{q}_{j{k}'}}=1\to {{q}_{j{k}'}}=0$ | $K_{jh}^{*}>2$的类别 | 10 | 属性既冗余又缺失 |
Q4 | ${{q}_{jk}}=0\to {{q}_{jk}}=1$ ${{q}_{jk}}=1\to {{q}_{jk}}=0$${{q}_{jk}}=0\to {{q}_{jk}}=1\text{ }{{q}_{j{k}'}}=1\to {{q}_{j{k}'}}=0$ | 分别为Q1、Q2和Q3的类别 | 20 | Q1、Q2和Q3的组合 |
Q5 | 10%随机调整 | 随机 | 20 | 调整后$1<K_{jh}^{*}<3$ |
Q6 | 20%随机调整 | 随机 | 40 | 调整后$1<K_{jh}^{*}<3$ |
表3BIC方法和Stepwise方法在seq-DINA模型中200次实验的平均结果
Q-matrix | N | PMR | AMR | FPR | TPR | RMSEA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stepwise | BIC | Stepwise | BIC | Stepwise | BIC | Stepwise | BIC | QW | QStepwise | QBIC | ||
Q1 | 500 | 0.795 | 0.788 | 0.957 | 0.963 | 0.118 | 0.157 | 0.958 | 0.965 | 0.017 | 0.015 | 0.007 |
1000 | 0.879 | 0.863 | 0.975 | 0.977 | 0.065 | 0.074 | 0.975 | 0.978 | 0.018 | 0.009 | 0.005 | |
2000 | 0.918 | 0.911 | 0.984 | 0.986 | 0.048 | 0.049 | 0.985 | 0.986 | 0.019 | 0.005 | 0.003 | |
Q2 | 500 | 0.763 | 0.790 | 0.953 | 0.962 | 0.367 | 0.021 | 0.958 | 0.962 | 0.017 | 0.016 | 0.007 |
1000 | 0.826 | 0.856 | 0.967 | 0.975 | 0.257 | 0.004 | 0.971 | 0.975 | 0.016 | 0.011 | 0.005 | |
2000 | 0.865 | 0.903 | 0.976 | 0.984 | 0.219 | 0.002 | 0.980 | 0.984 | 0.017 | 0.008 | 0.003 | |
Q3 | 500 | 0.758 | 0.786 | 0.952 | 0.962 | 0.339 | 0.126 | 0.963 | 0.966 | 0.033 | 0.016 | 0.006 |
1000 | 0.815 | 0.861 | 0.964 | 0.976 | 0.251 | 0.089 | 0.972 | 0.979 | 0.034 | 0.010 | 0.005 | |
2000 | 0.856 | 0.910 | 0.974 | 0.985 | 0.180 | 0.065 | 0.980 | 0.987 | 0.035 | 0.009 | 0.004 | |
Q4 | 500 | 0.680 | 0.776 | 0.938 | 0.961 | 0.363 | 0.110 | 0.962 | 0.966 | 0.041 | 0.020 | 0.007 |
1000 | 0.721 | 0.853 | 0.950 | 0.975 | 0.288 | 0.064 | 0.968 | 0.978 | 0.041 | 0.015 | 0.005 | |
2000 | 0.745 | 0.905 | 0.956 | 0.984 | 0.251 | 0.040 | 0.972 | 0.986 | 0.042 | 0.013 | 0.003 | |
Q5 | 500 | 0.760 | 0.777 | 0.951 | 0.959 | 0.112 | 0.068 | 0.956 | 0.961 | 0.075 | 0.020 | 0.008 |
1000 | 0.835 | 0.851 | 0.968 | 0.975 | 0.082 | 0.041 | 0.972 | 0.976 | 0.073 | 0.011 | 0.004 | |
2000 | 0.874 | 0.903 | 0.975 | 0.984 | 0.065 | 0.022 | 0.978 | 0.984 | 0.076 | 0.013 | 0.004 | |
Q6 | 500 | 0.629 | 0.687 | 0.924 | 0.933 | 0.184 | 0.105 | 0.943 | 0.940 | 0.100 | 0.035 | 0.015 |
1000 | 0.656 | 0.744 | 0.931 | 0.942 | 0.173 | 0.097 | 0.949 | 0.949 | 0.102 | 0.038 | 0.017 | |
2000 | 0.687 | 0.793 | 0.935 | 0.953 | 0.163 | 0.081 | 0.951 | 0.959 | 0.102 | 0.037 | 0.010 |
表3BIC方法和Stepwise方法在seq-DINA模型中200次实验的平均结果
Q-matrix | N | PMR | AMR | FPR | TPR | RMSEA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stepwise | BIC | Stepwise | BIC | Stepwise | BIC | Stepwise | BIC | QW | QStepwise | QBIC | ||
Q1 | 500 | 0.795 | 0.788 | 0.957 | 0.963 | 0.118 | 0.157 | 0.958 | 0.965 | 0.017 | 0.015 | 0.007 |
1000 | 0.879 | 0.863 | 0.975 | 0.977 | 0.065 | 0.074 | 0.975 | 0.978 | 0.018 | 0.009 | 0.005 | |
2000 | 0.918 | 0.911 | 0.984 | 0.986 | 0.048 | 0.049 | 0.985 | 0.986 | 0.019 | 0.005 | 0.003 | |
Q2 | 500 | 0.763 | 0.790 | 0.953 | 0.962 | 0.367 | 0.021 | 0.958 | 0.962 | 0.017 | 0.016 | 0.007 |
1000 | 0.826 | 0.856 | 0.967 | 0.975 | 0.257 | 0.004 | 0.971 | 0.975 | 0.016 | 0.011 | 0.005 | |
2000 | 0.865 | 0.903 | 0.976 | 0.984 | 0.219 | 0.002 | 0.980 | 0.984 | 0.017 | 0.008 | 0.003 | |
Q3 | 500 | 0.758 | 0.786 | 0.952 | 0.962 | 0.339 | 0.126 | 0.963 | 0.966 | 0.033 | 0.016 | 0.006 |
1000 | 0.815 | 0.861 | 0.964 | 0.976 | 0.251 | 0.089 | 0.972 | 0.979 | 0.034 | 0.010 | 0.005 | |
2000 | 0.856 | 0.910 | 0.974 | 0.985 | 0.180 | 0.065 | 0.980 | 0.987 | 0.035 | 0.009 | 0.004 | |
Q4 | 500 | 0.680 | 0.776 | 0.938 | 0.961 | 0.363 | 0.110 | 0.962 | 0.966 | 0.041 | 0.020 | 0.007 |
1000 | 0.721 | 0.853 | 0.950 | 0.975 | 0.288 | 0.064 | 0.968 | 0.978 | 0.041 | 0.015 | 0.005 | |
2000 | 0.745 | 0.905 | 0.956 | 0.984 | 0.251 | 0.040 | 0.972 | 0.986 | 0.042 | 0.013 | 0.003 | |
Q5 | 500 | 0.760 | 0.777 | 0.951 | 0.959 | 0.112 | 0.068 | 0.956 | 0.961 | 0.075 | 0.020 | 0.008 |
1000 | 0.835 | 0.851 | 0.968 | 0.975 | 0.082 | 0.041 | 0.972 | 0.976 | 0.073 | 0.011 | 0.004 | |
2000 | 0.874 | 0.903 | 0.975 | 0.984 | 0.065 | 0.022 | 0.978 | 0.984 | 0.076 | 0.013 | 0.004 | |
Q6 | 500 | 0.629 | 0.687 | 0.924 | 0.933 | 0.184 | 0.105 | 0.943 | 0.940 | 0.100 | 0.035 | 0.015 |
1000 | 0.656 | 0.744 | 0.931 | 0.942 | 0.173 | 0.097 | 0.949 | 0.949 | 0.102 | 0.038 | 0.017 | |
2000 | 0.687 | 0.793 | 0.935 | 0.953 | 0.163 | 0.081 | 0.951 | 0.959 | 0.102 | 0.037 | 0.010 |
表4BIC方法和Stepwise方法在seq-RRUM模型中200次实验的平均结果
Q-matrix | N | PMR | AMR | FPR | TPR | RMSEA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stepwise | BIC | Stepwise | BIC | Stepwise | BIC | Stepwise | BIC | QW | QStepwise | QBIC | ||
Q1 | 500 | 0.750 | 0.841 | 0.952 | 0.975 | 0.083 | 0.022 | 0.952 | 0.975 | 0.006 | 0.007 | 0.006 |
1000 | 0.823 | 0.884 | 0.968 | 0.982 | 0.037 | 0.041 | 0.968 | 0.983 | 0.005 | 0.005 | 0.005 | |
2000 | 0.864 | 0.915 | 0.976 | 0.987 | 0.029 | 0.020 | 0.977 | 0.987 | 0.004 | 0.005 | 0.004 | |
Q2 | 500 | 0.746 | 0.839 | 0.953 | 0.975 | 0.332 | 0.199 | 0.958 | 0.978 | 0.027 | 0.008 | 0.007 |
1000 | 0.819 | 0.890 | 0.968 | 0.983 | 0.264 | 0.153 | 0.972 | 0.986 | 0.026 | 0.006 | 0.005 | |
2000 | 0.843 | 0.919 | 0.974 | 0.988 | 0.252 | 0.117 | 0.978 | 0.990 | 0.026 | 0.005 | 0.003 | |
Q3 | 500 | 0.734 | 0.847 | 0.949 | 0.976 | 0.300 | 0.121 | 0.959 | 0.980 | 0.022 | 0.008 | 0.006 |
1000 | 0.794 | 0.877 | 0.963 | 0.981 | 0.241 | 0.086 | 0.971 | 0.983 | 0.023 | 0.006 | 0.005 | |
2000 | 0.843 | 0.914 | 0.973 | 0.987 | 0.171 | 0.057 | 0.979 | 0.989 | 0.023 | 0.005 | 0.003 | |
Q4 | 500 | 0.714 | 0.832 | 0.946 | 0.974 | 0.275 | 0.123 | 0.963 | 0.981 | 0.030 | 0.008 | 0.007 |
1000 | 0.770 | 0.881 | 0.959 | 0.982 | 0.215 | 0.085 | 0.973 | 0.987 | 0.031 | 0.006 | 0.005 | |
2000 | 0.796 | 0.917 | 0.966 | 0.987 | 0.195 | 0.058 | 0.978 | 0.991 | 0.032 | 0.005 | 0.003 | |
Q5 | 500 | 0.751 | 0.841 | 0.952 | 0.975 | 0.098 | 0.047 | 0.956 | 0.976 | 0.039 | 0.008 | 0.006 |
1000 | 0.807 | 0.880 | 0.965 | 0.982 | 0.073 | 0.038 | 0.968 | 0.983 | 0.035 | 0.005 | 0.005 | |
2000 | 0.849 | 0.914 | 0.974 | 0.987 | 0.053 | 0.021 | 0.976 | 0.987 | 0.039 | 0.005 | 0.004 | |
Q6 | 500 | 0.686 | 0.817 | 0.941 | 0.968 | 0.134 | 0.063 | 0.953 | 0.973 | 0.063 | 0.014 | 0.008 |
1000 | 0.726 | 0.848 | 0.948 | 0.973 | 0.127 | 0.058 | 0.960 | 0.978 | 0.070 | 0.012 | 0.007 | |
2000 | 0.748 | 0.896 | 0.953 | 0.982 | 0.120 | 0.032 | 0.966 | 0.984 | 0.063 | 0.009 | 0.004 |
表4BIC方法和Stepwise方法在seq-RRUM模型中200次实验的平均结果
Q-matrix | N | PMR | AMR | FPR | TPR | RMSEA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stepwise | BIC | Stepwise | BIC | Stepwise | BIC | Stepwise | BIC | QW | QStepwise | QBIC | ||
Q1 | 500 | 0.750 | 0.841 | 0.952 | 0.975 | 0.083 | 0.022 | 0.952 | 0.975 | 0.006 | 0.007 | 0.006 |
1000 | 0.823 | 0.884 | 0.968 | 0.982 | 0.037 | 0.041 | 0.968 | 0.983 | 0.005 | 0.005 | 0.005 | |
2000 | 0.864 | 0.915 | 0.976 | 0.987 | 0.029 | 0.020 | 0.977 | 0.987 | 0.004 | 0.005 | 0.004 | |
Q2 | 500 | 0.746 | 0.839 | 0.953 | 0.975 | 0.332 | 0.199 | 0.958 | 0.978 | 0.027 | 0.008 | 0.007 |
1000 | 0.819 | 0.890 | 0.968 | 0.983 | 0.264 | 0.153 | 0.972 | 0.986 | 0.026 | 0.006 | 0.005 | |
2000 | 0.843 | 0.919 | 0.974 | 0.988 | 0.252 | 0.117 | 0.978 | 0.990 | 0.026 | 0.005 | 0.003 | |
Q3 | 500 | 0.734 | 0.847 | 0.949 | 0.976 | 0.300 | 0.121 | 0.959 | 0.980 | 0.022 | 0.008 | 0.006 |
1000 | 0.794 | 0.877 | 0.963 | 0.981 | 0.241 | 0.086 | 0.971 | 0.983 | 0.023 | 0.006 | 0.005 | |
2000 | 0.843 | 0.914 | 0.973 | 0.987 | 0.171 | 0.057 | 0.979 | 0.989 | 0.023 | 0.005 | 0.003 | |
Q4 | 500 | 0.714 | 0.832 | 0.946 | 0.974 | 0.275 | 0.123 | 0.963 | 0.981 | 0.030 | 0.008 | 0.007 |
1000 | 0.770 | 0.881 | 0.959 | 0.982 | 0.215 | 0.085 | 0.973 | 0.987 | 0.031 | 0.006 | 0.005 | |
2000 | 0.796 | 0.917 | 0.966 | 0.987 | 0.195 | 0.058 | 0.978 | 0.991 | 0.032 | 0.005 | 0.003 | |
Q5 | 500 | 0.751 | 0.841 | 0.952 | 0.975 | 0.098 | 0.047 | 0.956 | 0.976 | 0.039 | 0.008 | 0.006 |
1000 | 0.807 | 0.880 | 0.965 | 0.982 | 0.073 | 0.038 | 0.968 | 0.983 | 0.035 | 0.005 | 0.005 | |
2000 | 0.849 | 0.914 | 0.974 | 0.987 | 0.053 | 0.021 | 0.976 | 0.987 | 0.039 | 0.005 | 0.004 | |
Q6 | 500 | 0.686 | 0.817 | 0.941 | 0.968 | 0.134 | 0.063 | 0.953 | 0.973 | 0.063 | 0.014 | 0.008 |
1000 | 0.726 | 0.848 | 0.948 | 0.973 | 0.127 | 0.058 | 0.960 | 0.978 | 0.070 | 0.012 | 0.007 | |
2000 | 0.748 | 0.896 | 0.953 | 0.982 | 0.120 | 0.032 | 0.966 | 0.984 | 0.063 | 0.009 | 0.004 |
表5BIC方法和Stepwise方法在seq-GDINA模型中200次实验的平均结果
Q-matrix | N | PMR | AMR | FPR | TPR | RMSEA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stepwise | BIC | Stepwise | BIC | Stepwise | BIC | Stepwise | BIC | QW | QStepwise | QBIC | ||
Q1 | 500 | 0.795 | 0.861 | 0.961 | 0.979 | 0.075 | 0.006 | 0.962 | 0.979 | 0.007 | 0.007 | 0.007 |
1000 | 0.875 | 0.913 | 0.978 | 0.987 | 0.032 | 0.004 | 0.978 | 0.987 | 0.005 | 0.006 | 0.005 | |
2000 | 0.919 | 0.950 | 0.986 | 0.993 | 0.020 | 0.001 | 0.986 | 0.993 | 0.004 | 0.005 | 0.004 | |
Q2 | 500 | 0.799 | 0.864 | 0.964 | 0.980 | 0.209 | 0.211 | 0.967 | 0.983 | 0.029 | 0.008 | 0.009 |
1000 | 0.877 | 0.916 | 0.979 | 0.988 | 0.108 | 0.110 | 0.980 | 0.990 | 0.030 | 0.006 | 0.006 | |
2000 | 0.915 | 0.948 | 0.986 | 0.993 | 0.093 | 0.067 | 0.987 | 0.994 | 0.030 | 0.004 | 0.004 | |
Q3 | 500 | 0.794 | 0.867 | 0.961 | 0.980 | 0.236 | 0.125 | 0.969 | 0.984 | 0.022 | 0.007 | 0.008 |
1000 | 0.854 | 0.910 | 0.974 | 0.987 | 0.170 | 0.069 | 0.979 | 0.989 | 0.025 | 0.006 | 0.006 | |
2000 | 0.904 | 0.949 | 0.984 | 0.993 | 0.106 | 0.038 | 0.988 | 0.994 | 0.025 | 0.005 | 0.003 | |
Q4 | 500 | 0.775 | 0.863 | 0.958 | 0.979 | 0.193 | 0.106 | 0.970 | 0.985 | 0.033 | 0.009 | 0.008 |
1000 | 0.840 | 0.912 | 0.972 | 0.987 | 0.136 | 0.062 | 0.981 | 0.991 | 0.033 | 0.007 | 0.006 | |
2000 | 0.884 | 0.945 | 0.981 | 0.992 | 0.112 | 0.040 | 0.989 | 0.994 | 0.034 | 0.005 | 0.004 | |
Q5 | 500 | 0.786 | 0.866 | 0.959 | 0.980 | 0.086 | 0.040 | 0.962 | 0.981 | 0.034 | 0.009 | 0.009 |
1000 | 0.859 | 0.911 | 0.975 | 0.987 | 0.053 | 0.023 | 0.977 | 0.988 | 0.036 | 0.006 | 0.006 | |
2000 | 0.912 | 0.949 | 0.985 | 0.993 | 0.031 | 0.011 | 0.987 | 0.993 | 0.041 | 0.005 | 0.004 | |
Q6 | 500 | 0.731 | 0.838 | 0.948 | 0.973 | 0.122 | 0.059 | 0.960 | 0.978 | 0.061 | 0.015 | 0.009 |
1000 | 0.784 | 0.885 | 0.959 | 0.980 | 0.104 | 0.039 | 0.970 | 0.983 | 0.066 | 0.010 | 0.007 | |
2000 | 0.913 | 0.948 | 0.985 | 0.992 | 0.037 | 0.015 | 0.987 | 0.993 | 0.041 | 0.004 | 0.004 |
表5BIC方法和Stepwise方法在seq-GDINA模型中200次实验的平均结果
Q-matrix | N | PMR | AMR | FPR | TPR | RMSEA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stepwise | BIC | Stepwise | BIC | Stepwise | BIC | Stepwise | BIC | QW | QStepwise | QBIC | ||
Q1 | 500 | 0.795 | 0.861 | 0.961 | 0.979 | 0.075 | 0.006 | 0.962 | 0.979 | 0.007 | 0.007 | 0.007 |
1000 | 0.875 | 0.913 | 0.978 | 0.987 | 0.032 | 0.004 | 0.978 | 0.987 | 0.005 | 0.006 | 0.005 | |
2000 | 0.919 | 0.950 | 0.986 | 0.993 | 0.020 | 0.001 | 0.986 | 0.993 | 0.004 | 0.005 | 0.004 | |
Q2 | 500 | 0.799 | 0.864 | 0.964 | 0.980 | 0.209 | 0.211 | 0.967 | 0.983 | 0.029 | 0.008 | 0.009 |
1000 | 0.877 | 0.916 | 0.979 | 0.988 | 0.108 | 0.110 | 0.980 | 0.990 | 0.030 | 0.006 | 0.006 | |
2000 | 0.915 | 0.948 | 0.986 | 0.993 | 0.093 | 0.067 | 0.987 | 0.994 | 0.030 | 0.004 | 0.004 | |
Q3 | 500 | 0.794 | 0.867 | 0.961 | 0.980 | 0.236 | 0.125 | 0.969 | 0.984 | 0.022 | 0.007 | 0.008 |
1000 | 0.854 | 0.910 | 0.974 | 0.987 | 0.170 | 0.069 | 0.979 | 0.989 | 0.025 | 0.006 | 0.006 | |
2000 | 0.904 | 0.949 | 0.984 | 0.993 | 0.106 | 0.038 | 0.988 | 0.994 | 0.025 | 0.005 | 0.003 | |
Q4 | 500 | 0.775 | 0.863 | 0.958 | 0.979 | 0.193 | 0.106 | 0.970 | 0.985 | 0.033 | 0.009 | 0.008 |
1000 | 0.840 | 0.912 | 0.972 | 0.987 | 0.136 | 0.062 | 0.981 | 0.991 | 0.033 | 0.007 | 0.006 | |
2000 | 0.884 | 0.945 | 0.981 | 0.992 | 0.112 | 0.040 | 0.989 | 0.994 | 0.034 | 0.005 | 0.004 | |
Q5 | 500 | 0.786 | 0.866 | 0.959 | 0.980 | 0.086 | 0.040 | 0.962 | 0.981 | 0.034 | 0.009 | 0.009 |
1000 | 0.859 | 0.911 | 0.975 | 0.987 | 0.053 | 0.023 | 0.977 | 0.988 | 0.036 | 0.006 | 0.006 | |
2000 | 0.912 | 0.949 | 0.985 | 0.993 | 0.031 | 0.011 | 0.987 | 0.993 | 0.041 | 0.005 | 0.004 | |
Q6 | 500 | 0.731 | 0.838 | 0.948 | 0.973 | 0.122 | 0.059 | 0.960 | 0.978 | 0.061 | 0.015 | 0.009 |
1000 | 0.784 | 0.885 | 0.959 | 0.980 | 0.104 | 0.039 | 0.970 | 0.983 | 0.066 | 0.010 | 0.007 | |
2000 | 0.913 | 0.948 | 0.985 | 0.992 | 0.037 | 0.015 | 0.987 | 0.993 | 0.041 | 0.004 | 0.004 |
表6TIMSS 2011(8年级)数据Q矩阵及修正结果
Item | Code | 类别 | A1 | A2 | A3 | A4 | A5 | A6 | A7 |
---|---|---|---|---|---|---|---|---|---|
1 | M042041 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
2 | M042024 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
3 | M042016 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1*# |
4 | M042002 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | M042198A | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0*# |
6 | M042198B | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
7 | M042198C | 1 | 0 | 0 | 1 | 0 | 0* | 0 | 0 |
8 | M042077 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
9 | M042235 | 1 | 0 | 0 | 0 | 1 | 0* | 0 | 0 |
10 | M042150 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
11 | M042300Z | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
11 | M042300Z | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
12 | M042169A | 1 | 0* | 0 | 0 | 0 | 0 | 0 | 1 |
13 | M042169B | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
14 | M042169C | 1 | 0* | 0 | 0 | 0 | 0 | 0 | 1 |
15 | M032352 | 1 | 1 | 0 | 1*# | 0 | 0 | 0 | 1* |
16 | M032725 | 1 | 0 | 1* | 0 | 0 | 0 | 0*# | 0 |
17 | M032738 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
18 | M032295 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
19 | M032331 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
20 | M032679 | 1 | 0 | 0 | 0 | 0 | 1 | 1* | 0 |
21 | M032047 | 1 | 1 | 0 | 0 | 1*# | 0 | 0 | 0 |
22 | M032398 | 1 | 0* | 0 | 0 | 0 | 1 | 0 | 0 |
23 | M032424 | 1 | 0 | 0*# | 0 | 1 | 0 | 0 | 0 |
表6TIMSS 2011(8年级)数据Q矩阵及修正结果
Item | Code | 类别 | A1 | A2 | A3 | A4 | A5 | A6 | A7 |
---|---|---|---|---|---|---|---|---|---|
1 | M042041 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
2 | M042024 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
3 | M042016 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1*# |
4 | M042002 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | M042198A | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0*# |
6 | M042198B | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
7 | M042198C | 1 | 0 | 0 | 1 | 0 | 0* | 0 | 0 |
8 | M042077 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
9 | M042235 | 1 | 0 | 0 | 0 | 1 | 0* | 0 | 0 |
10 | M042150 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
11 | M042300Z | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
11 | M042300Z | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
12 | M042169A | 1 | 0* | 0 | 0 | 0 | 0 | 0 | 1 |
13 | M042169B | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
14 | M042169C | 1 | 0* | 0 | 0 | 0 | 0 | 0 | 1 |
15 | M032352 | 1 | 1 | 0 | 1*# | 0 | 0 | 0 | 1* |
16 | M032725 | 1 | 0 | 1* | 0 | 0 | 0 | 0*# | 0 |
17 | M032738 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
18 | M032295 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
19 | M032331 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
20 | M032679 | 1 | 0 | 0 | 0 | 0 | 1 | 1* | 0 |
21 | M032047 | 1 | 1 | 0 | 0 | 1*# | 0 | 0 | 0 |
22 | M032398 | 1 | 0* | 0 | 0 | 0 | 1 | 0 | 0 |
23 | M032424 | 1 | 0 | 0*# | 0 | 1 | 0 | 0 | 0 |
表7TIMSS 2011(8年级)数据不同方法Q矩阵修正一致率
Q | Qoriginal | QBIC | QStepwise |
---|---|---|---|
Qoriginal | 1 | ||
QBIC | 0.92 | 1 | |
QStepwise | 0.96 | 0.95 | 1 |
表7TIMSS 2011(8年级)数据不同方法Q矩阵修正一致率
Q | Qoriginal | QBIC | QStepwise |
---|---|---|---|
Qoriginal | 1 | ||
QBIC | 0.92 | 1 | |
QStepwise | 0.96 | 0.95 | 1 |
表8TIMSS 2011 (8年级)数据原有Q矩阵和两种方法修正后Q矩阵的拟合指标
Q | 相对拟合指标 | 绝对拟合指标 | ||||||
---|---|---|---|---|---|---|---|---|
-2*LL | AIC | BIC | M2检验 | RMSEA | SRMSR | |||
M2 | df | p | ||||||
Qoriginal | 18888.23 | 19274.23 | 20165.39 | 123.51 | 83 | 0.003 | 0.026 | 0.059 |
QBIC | 18624.73 | 19014.73 | 19915.13 | 89.02 | 81 | 0.254 | 0.012 | 0.044 |
QStepwise | 18757.88 | 19139.88 | 20021.88 | 89.90 | 85 | 0.337 | 0.009 | 0.050 |
表8TIMSS 2011 (8年级)数据原有Q矩阵和两种方法修正后Q矩阵的拟合指标
Q | 相对拟合指标 | 绝对拟合指标 | ||||||
---|---|---|---|---|---|---|---|---|
-2*LL | AIC | BIC | M2检验 | RMSEA | SRMSR | |||
M2 | df | p | ||||||
Qoriginal | 18888.23 | 19274.23 | 20165.39 | 123.51 | 83 | 0.003 | 0.026 | 0.059 |
QBIC | 18624.73 | 19014.73 | 19915.13 | 89.02 | 81 | 0.254 | 0.012 | 0.044 |
QStepwise | 18757.88 | 19139.88 | 20021.88 | 89.90 | 85 | 0.337 | 0.009 | 0.050 |
表9TIMSS 2007(4年级)数据Q矩阵及修正结果
Item | Code | 类别 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 |
---|---|---|---|---|---|---|---|---|---|---|
1 | M041052 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | M041281 | 1 | 0 | 1 | 1* | 0 | 1* | 0 | 0 | 0 |
3 | M041275 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1* |
3 | M041275 | 2 | 1* | 0 | 0 | 0 | 0 | 1 | 0 | 1* |
4 | M031303 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
5 | M031309 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
6 | M031245 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
7 | M031242A | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
7 | M031242B | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
8 | M031242C | 1 | 0 | 1* | 1* | 0 | 1 | 0 | 1* | 0 |
9 | M031247 | 1 | 0 | 1* | 1 | 1 | 0 | 0 | 0 | 0 |
9 | M031247 | 2 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
10 | M031173 | 1 | 0* | 1* | 1 | 0 | 0 | 0 | 0 | 0 |
11 | M031172 | 1 | 1* | 1* | 0 | 0 | 0 | 1* | 0 | 1 |
表9TIMSS 2007(4年级)数据Q矩阵及修正结果
Item | Code | 类别 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 |
---|---|---|---|---|---|---|---|---|---|---|
1 | M041052 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | M041281 | 1 | 0 | 1 | 1* | 0 | 1* | 0 | 0 | 0 |
3 | M041275 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1* |
3 | M041275 | 2 | 1* | 0 | 0 | 0 | 0 | 1 | 0 | 1* |
4 | M031303 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
5 | M031309 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
6 | M031245 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
7 | M031242A | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
7 | M031242B | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
8 | M031242C | 1 | 0 | 1* | 1* | 0 | 1 | 0 | 1* | 0 |
9 | M031247 | 1 | 0 | 1* | 1 | 1 | 0 | 0 | 0 | 0 |
9 | M031247 | 2 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
10 | M031173 | 1 | 0* | 1* | 1 | 0 | 0 | 0 | 0 | 0 |
11 | M031172 | 1 | 1* | 1* | 0 | 0 | 0 | 1* | 0 | 1 |
参考文献 27
[1] | Akaike H . ( 1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19( 6), 716-723. doi: 10.5665/sleep.5436URLpmid: 26446118 |
[2] | Chang H.-H . ( 2015). Psychometrics behind computerized adaptive testing. Psychometrika, 80( 1), 1-20. doi: 10.1007/s11336-014-9401-5URLpmid: 24499939 |
[3] | Chang H.-H., & Wang W. Y . ( 2016). ‘‘Internet plus’’ measurement and evaluation: A new way for adaptive learning. Journal of Jiangxi Normal University (Natural Science), 40( 5), 441-455. |
[ 张华华, 汪文义 . ( 2016). “互联网+”测评: 自适应学习之路. 江西师范大学学报(自然科学版), 40( 5), 441-455.] | |
[4] | Chen J. S .( 2017). A residual-based approach to validate Q-matrix specifications. Applied Psychological Measurement, 41( 4), 277-293. doi: 10.1177/0146621616686021URLpmid: 29881093 |
[5] | Chen J., de la Torre J., & Zhang Z . ( 2013). Relative and absolute fit evaluation in cognitive diagnosis modeling. Journal of Educational Measurement, 50( 2), 123-140. doi: 10.1177/0146621617707510URLpmid: 29882533 |
[6] | Chiu C.-Y . ( 2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37( 8), 598-618. doi: 10.1177/0146621613488436URL |
[7] | de la Torre J . ( 2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45( 4), 343-362. doi: 10.1111/jedm.2008.45.issue-4URL |
[8] | de la Torre J . ( 2011). The generalized DINA model framework. Psychometrika, 76( 2), 179-199. doi: 10.1007/s11336-011-9207-7URL |
[9] | de la Torre J., & Chiu C.-Y . ( 2016). A general method of empirical Q-matrix validation. Psychometrika, 81( 2), 253-273. doi: 10.1007/s11336-015-9467-8URLpmid: 25943366 |
[10] | Haertel E . ( 1984). An application of latent class models to assessment data. Applied Psychological Measurement, 8( 3), 333-346. doi: 10.1177/0163278719871090URLpmid: 31462073 |
[11] | Hansen M . ( 2013). Hierarchical item response models for cognitive diagnosis (Unpublished doctoral dissertation). University of California at Los Angeles. doi: 10.11646/zootaxa.4273.2.7URLpmid: 28610254 |
[12] | Hartz, S., Hartz S., & Roussos L . ( 2008). The fusion model for skills diagnosis: Blending theory with practicality. Educational Testing Service, Research Report, RR-08-71. Princeton, NJ: Educational Testing Service. |
[13] | Lee Y.-S., Park Y. S., & Taylan D . ( 2011). A cognitive diagnostic modeling of attribute mastery in massachusetts, minnesota, and the U.S. national sample using the TIMSS 2007. International Journal of Testing, 11( 2), 144-177. doi: 10.1080/15305058.2010.534571URL |
[14] | Liu Y., Tian W., & Xin T . ( 2016). An application of M2 statistic to evaluate the fit of cognitive diagnostic models. Journal of Educational and Behavioral Statistics, 41( 1), 3-26. doi: 10.3102/1076998615621293URL |
[15] | Liu Y., Xin T., Andersson B., & Tian W . ( 2019). Information matrix estimation procedures for cognitive diagnostic models. British Journal of Mathematical and Statistical Psychology, 72( 1), 18-37. doi: 10.1111/bmsp.12134URLpmid: 29508383 |
[16] | Ma W., & de la Torre J . ( 2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69( 3), 253-275. doi: 10.1111/bmsp.12070URLpmid: 27317397 |
[17] | Ma W., & de la Torre J . ( 2019). An empirical Q‐matrix validation method for the sequential generalized DINA model. British Journal of Mathematical and Statistical Psychology. . doi: 10.1111/bmsp.12194URLpmid: 31853965 |
[18] | Maris E . ( 1999). Estimating multiple classification latent class models. Psychometrika, 64( 2), 187-212. doi: 10.1016/j.jcrc.2018.06.012URLpmid: 29933169 |
[19] | Park J. Y., Lee Y.-S., & Johnson M. S . ( 2017). An efficient standard error estimator of the DINA model parameters when analysing clustered data. International Journal of Quantitative Research in Education, 4( 1/2), 159-190. doi: 10.1504/IJQRE.2017.086507URL |
[20] | Schwarz G . ( 1978). Estimating the dimension of a model. Annals of Statistics, 6( 2), 461-464. doi: 10.1111/biom.13195URLpmid: 31797368 |
[21] | Templin J. L., & Henson R. A . ( 2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11( 3), 287-305. doi: 10.1037/1082-989X.11.3.287URLpmid: 16953706 |
[22] | Tu D.-B., Cai Y., & Dai H.-Q . ( 2012). A new method of Q-Matrix validation based on DINA model. Acta Psychologica Sinica, 44( 4), 558-568. |
[ 涂冬波, 蔡艳, 戴海琦 . ( 2012). 基于DINA模型的Q矩阵修正方法. 心理学报, 44( 4), 558-568.] | |
[23] | Tu D.-B., Cai Y., Dai H.-Q., & Ding S.-L . ( 2010). A polytomous cognitive diagnosis model: P- DINA model. Acta Psychologica Sinica, 42( 10), 1011-1020. |
[ 涂冬波, 蔡艳, 戴海琦, 丁树良 . ( 2010). 一种多级评分的认知诊断模型: P-DINA模型的开发. 心理学报, 42( 10), 1011-1020.] | |
[24] | von Davier M . ( 2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61( 2), 287-307. doi: 10.1348/000711007X193957URLpmid: 17535481 |
[25] | Wang D.-X., Gao X.-L., Cai Y., & Tu D.-B . ( 2018). A new Q-matrix estimation method: ICC based on ideal response. Journal of Psychological Science, 41( 2), 466-474. |
[ 汪大勋, 高旭亮, 蔡艳, 涂冬波 . ( 2018). 一种非参数化的Q矩阵估计方法: ICC-IR方法开发. 心理科学, 41( 2), 466-474.] | |
[26] | Wang D.-X., Gao X.-L., Han Y.-T., & Tu D.-B . ( 2018). A simple and effective Q-matrix estimation method: From non-parametric perspective. Journal of Psychological Science, 41( 1), 180-188. |
[ 汪大勋, 高旭亮, 韩雨婷, 涂冬波 . ( 2018). 一种简单有效的Q矩阵估计方法开发:基于非参数化方法视角. 心理科学, 41( 1), 180-188.] | |
[27] | Xu G., & Shang Z .( 2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, . doi: 10.1080/01621459.2018.1476239URLpmid: 31777410 |
相关文章 15
[1] | 罗芬, 王晓庆, 蔡艳, 涂冬波. 基于基尼指数的双目标CD-CAT选题策略[J]. 心理学报, 2020, 52(12): 1452-1465. |
[2] | 詹沛达,于照辉,李菲茗,王立君. 一种基于多阶认知诊断模型测评科学素养的方法[J]. 心理学报, 2019, 51(6): 734-746. |
[3] | 高旭亮,汪大勋,王芳,蔡艳,涂冬波. 基于分部评分模型思路的多级评分认知诊断模型开发[J]. 心理学报, 2019, 51(12): 1386-1397. |
[4] | 高椿雷;罗照盛;喻晓锋; 彭亚风;郑蝉金. CD-MST初始阶段模块组建方法比较[J]. 心理学报, 2016, 48(8): 1037-1046. |
[5] | 康春花; 任平; 曾平飞. 多级评分聚类诊断法的影响因素[J]. 心理学报, 2016, 48(7): 891-902. |
[6] | 郭磊; 郑蝉金; 边玉芳; 宋乃庆; 夏凌翔. 认知诊断计算机化自适应测验中新的选题策略:结合项目区分度指标[J]. 心理学报, 2016, 48(7): 903-914. |
[7] | 刘彦楼;辛涛;李令青;田伟;刘笑笑. 改进的认知诊断模型项目功能差异检验方法 ——基于观察信息矩阵的Wald统计量[J]. 心理学报, 2016, 48(5): 588-598. |
[8] | 詹沛达;边玉芳;王立君. 重参数化的多分属性诊断分类模型及其判准率影响因素[J]. 心理学报, 2016, 48(3): 318-330. |
[9] | 彭亚风;罗照盛;喻晓锋;高椿雷;李喻骏. 认知诊断评价中测验结构的优化设计[J]. 心理学报, 2016, 48(12): 1600-1611. |
[10] | 蔡艳;苗莹;涂冬波. 多级评分的认知诊断计算机化适应测验[J]. 心理学报, 2016, 48(10): 1338-1346. |
[11] | 詹沛达;陈平;边玉芳. 使用验证性补偿多维IRT模型进行认知诊断评估[J]. 心理学报, 2016, 48(10): 1347-1356. |
[12] | 康春花;任平;曾平飞. 非参数认知诊断方法:多级评分的聚类分析[J]. 心理学报, 2015, 47(8): 1077-1088. |
[13] | 罗照盛;喻晓锋;高椿雷;李喻骏;彭亚风;王 睿;王钰彤. 基于属性掌握概率的认知诊断计算机化自适应测验选题策略[J]. 心理学报, 2015, 47(5): 679-688. |
[14] | 詹沛达;李晓敏;王文中;边玉芳;王立君. 多维题组效应认知诊断模型[J]. 心理学报, 2015, 47(5): 689-701. |
[15] | 罗照盛;李喻骏;喻晓锋;高椿雷;彭亚风. 一种基于Q矩阵理论朴素的认知诊断方法[J]. 心理学报, 2015, 47(2): 264-272. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4607