删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于类别水平的多级计分认知诊断Q矩阵修正:相对拟合统计量视角

本站小编 Free考研考试/2022-01-01

汪大勋1, 高旭亮2, 蔡艳1, 涂冬波1()
1 江西师范大学心理学院, 南昌 330022
2 贵州师范大学心理学院, 贵阳 550000
收稿日期:2018-12-14出版日期:2020-01-25发布日期:2019-11-21
通讯作者:涂冬波E-mail:tudongbo@aliyun.com

基金资助:* 国家自然科学基金(31660278);国家自然科学基金(31760288);国家自然科学基金(31960186);江西省教育厅研究生创新基金(YC2018-B025);江西师范大学研究生境内外访学项目的资助

A method of Q-matrix validation for polytomous response cognitive diagnosis model based on relative fit statistics

WANG Daxun1, GAO Xuliang2, CAI Yan1, TU Dongbo1()
1 School of Psychology, Jiangxi Normal University, Nanchang 330022, China
2 School of Psychology, Guizhou Normal University, Guiyang 550000, China
Received:2018-12-14Online:2020-01-25Published:2019-11-21
Contact:TU Dongbo E-mail:tudongbo@aliyun.com






摘要/Abstract


摘要: 多级计分认知诊断模型的开发对认知诊断的发展具有重要作用, 但对于多级计分模型下的Q矩阵修正还有待研究。本研究尝试对多级计分认知诊断Q矩阵修正进行研究, 并聚焦更具诊断价值的基于项目类别水平的Q矩阵修正。将相对拟合统计量应用于多级计分认知诊断Q矩阵修正, 并与已有方法Stepwise方法( Ma & de la Torre, 2019)进行比较。研究表明:BIC方法对多级计分认知诊断模型的Q矩阵修正具有较高的模式判准率和属性判准率, 其对Q矩阵的恢复率也高于Stepwise方法, BIC方法修正后的Q矩阵与数据更加拟合; 在复杂模型中, 相对拟合指标BIC比AIC和-2LL表现更好, 在实践中, 使用者可以选择BIC法进行测验Q矩阵修正; Q矩阵修正效果受到被试人数的影响, 增加被试人数可以提高Q矩阵修正的正确率。总之, 本研究为多级计分认知诊断Q矩阵修正提供了重要的方法支持。


表1测验Q矩阵
题目 类别 A1 A2 A3 A4 A5 题目 类别 A1 A2 A3 A4 A5
1 1 1 0 0 0 0 11 1 1 1 0 0 0
1 2 0 1 0 0 0 11 2 0 0 0 0 1
2 1 0 0 1 0 0 12 1 1 1 1 0 0
2 2 0 0 0 1 0 12 2 0 0 0 1 1
3 1 0 0 0 0 1 13 1 1 1 0 0 0
3 2 1 0 0 0 0 13 2 0 0 1 1 1
4 1 0 0 0 0 1 14 1 1 0 1 0 0
4 2 0 0 0 1 0 14 2 0 0 0 1 0
5 1 0 0 1 0 0 14 3 0 0 0 0 1
5 2 0 1 0 0 0 15 1 0 0 0 0 1
6 1 1 0 0 0 0 15 2 0 0 1 1 0
6 2 0 1 1 0 0 15 3 0 1 0 0 0
7 1 0 0 1 0 0 16 1 1 0 0 0 0
7 2 0 0 0 1 1 16 2 0 1 0 0 0
8 1 0 0 0 0 1 16 3 0 0 1 1 0
8 2 1 1 0 0 0 17 1 1 0 0 0 0
9 1 0 0 0 1 1 18 1 0 1 0 0 0
9 2 0 0 1 0 0 19 1 0 0 1 0 0
10 1 0 1 0 1 0 20 1 0 0 0 1 0
10 2 1 0 0 0 0 21 1 0 0 0 0 1

表1测验Q矩阵
题目 类别 A1 A2 A3 A4 A5 题目 类别 A1 A2 A3 A4 A5
1 1 1 0 0 0 0 11 1 1 1 0 0 0
1 2 0 1 0 0 0 11 2 0 0 0 0 1
2 1 0 0 1 0 0 12 1 1 1 1 0 0
2 2 0 0 0 1 0 12 2 0 0 0 1 1
3 1 0 0 0 0 1 13 1 1 1 0 0 0
3 2 1 0 0 0 0 13 2 0 0 1 1 1
4 1 0 0 0 0 1 14 1 1 0 1 0 0
4 2 0 0 0 1 0 14 2 0 0 0 1 0
5 1 0 0 1 0 0 14 3 0 0 0 0 1
5 2 0 1 0 0 0 15 1 0 0 0 0 1
6 1 1 0 0 0 0 15 2 0 0 1 1 0
6 2 0 1 1 0 0 15 3 0 1 0 0 0
7 1 0 0 1 0 0 16 1 1 0 0 0 0
7 2 0 0 0 1 1 16 2 0 1 0 0 0
8 1 0 0 0 0 1 16 3 0 0 1 1 0
8 2 1 1 0 0 0 17 1 1 0 0 0 0
9 1 0 0 0 1 1 18 1 0 1 0 0 0
9 2 0 0 1 0 0 19 1 0 0 1 0 0
10 1 0 1 0 1 0 20 1 0 0 0 1 0
10 2 1 0 0 0 0 21 1 0 0 0 0 1


表2Q矩阵错误类型
Q Q矩阵错误模拟规则 调整的类别 调整的属性个数 备注
Q1 ${{q}_{jk}}=0\to {{q}_{jk}}=1$ $K_{jh}^{*}=1$的类别 5 属性冗余
Q2 ${{q}_{jk}}=1\to {{q}_{jk}}=0$ $K_{jh}^{*}>2$的类别 5 属性缺失
Q3 ${{q}_{jk}}=0\to {{q}_{jk}}=1,{{q}_{j{k}'}}=1\to {{q}_{j{k}'}}=0$ $K_{jh}^{*}>2$的类别 10 属性既冗余又缺失
Q4 ${{q}_{jk}}=0\to {{q}_{jk}}=1$
${{q}_{jk}}=1\to {{q}_{jk}}=0$${{q}_{jk}}=0\to {{q}_{jk}}=1\text{ }{{q}_{j{k}'}}=1\to {{q}_{j{k}'}}=0$
分别为Q1、Q2和Q3的类别 20 Q1、Q2和Q3的组合
Q5 10%随机调整 随机 20 调整后$1<K_{jh}^{*}<3$
Q6 20%随机调整 随机 40 调整后$1<K_{jh}^{*}<3$

表2Q矩阵错误类型
Q Q矩阵错误模拟规则 调整的类别 调整的属性个数 备注
Q1 ${{q}_{jk}}=0\to {{q}_{jk}}=1$ $K_{jh}^{*}=1$的类别 5 属性冗余
Q2 ${{q}_{jk}}=1\to {{q}_{jk}}=0$ $K_{jh}^{*}>2$的类别 5 属性缺失
Q3 ${{q}_{jk}}=0\to {{q}_{jk}}=1,{{q}_{j{k}'}}=1\to {{q}_{j{k}'}}=0$ $K_{jh}^{*}>2$的类别 10 属性既冗余又缺失
Q4 ${{q}_{jk}}=0\to {{q}_{jk}}=1$
${{q}_{jk}}=1\to {{q}_{jk}}=0$${{q}_{jk}}=0\to {{q}_{jk}}=1\text{ }{{q}_{j{k}'}}=1\to {{q}_{j{k}'}}=0$
分别为Q1、Q2和Q3的类别 20 Q1、Q2和Q3的组合
Q5 10%随机调整 随机 20 调整后$1<K_{jh}^{*}<3$
Q6 20%随机调整 随机 40 调整后$1<K_{jh}^{*}<3$


表3BIC方法和Stepwise方法在seq-DINA模型中200次实验的平均结果
Q-matrix N PMR AMR FPR TPR RMSEA
Stepwise BIC Stepwise BIC Stepwise BIC Stepwise BIC QW QStepwise QBIC
Q1 500 0.795 0.788 0.957 0.963 0.118 0.157 0.958 0.965 0.017 0.015 0.007
1000 0.879 0.863 0.975 0.977 0.065 0.074 0.975 0.978 0.018 0.009 0.005
2000 0.918 0.911 0.984 0.986 0.048 0.049 0.985 0.986 0.019 0.005 0.003
Q2 500 0.763 0.790 0.953 0.962 0.367 0.021 0.958 0.962 0.017 0.016 0.007
1000 0.826 0.856 0.967 0.975 0.257 0.004 0.971 0.975 0.016 0.011 0.005
2000 0.865 0.903 0.976 0.984 0.219 0.002 0.980 0.984 0.017 0.008 0.003
Q3 500 0.758 0.786 0.952 0.962 0.339 0.126 0.963 0.966 0.033 0.016 0.006
1000 0.815 0.861 0.964 0.976 0.251 0.089 0.972 0.979 0.034 0.010 0.005
2000 0.856 0.910 0.974 0.985 0.180 0.065 0.980 0.987 0.035 0.009 0.004
Q4 500 0.680 0.776 0.938 0.961 0.363 0.110 0.962 0.966 0.041 0.020 0.007
1000 0.721 0.853 0.950 0.975 0.288 0.064 0.968 0.978 0.041 0.015 0.005
2000 0.745 0.905 0.956 0.984 0.251 0.040 0.972 0.986 0.042 0.013 0.003
Q5 500 0.760 0.777 0.951 0.959 0.112 0.068 0.956 0.961 0.075 0.020 0.008
1000 0.835 0.851 0.968 0.975 0.082 0.041 0.972 0.976 0.073 0.011 0.004
2000 0.874 0.903 0.975 0.984 0.065 0.022 0.978 0.984 0.076 0.013 0.004
Q6 500 0.629 0.687 0.924 0.933 0.184 0.105 0.943 0.940 0.100 0.035 0.015
1000 0.656 0.744 0.931 0.942 0.173 0.097 0.949 0.949 0.102 0.038 0.017
2000 0.687 0.793 0.935 0.953 0.163 0.081 0.951 0.959 0.102 0.037 0.010

表3BIC方法和Stepwise方法在seq-DINA模型中200次实验的平均结果
Q-matrix N PMR AMR FPR TPR RMSEA
Stepwise BIC Stepwise BIC Stepwise BIC Stepwise BIC QW QStepwise QBIC
Q1 500 0.795 0.788 0.957 0.963 0.118 0.157 0.958 0.965 0.017 0.015 0.007
1000 0.879 0.863 0.975 0.977 0.065 0.074 0.975 0.978 0.018 0.009 0.005
2000 0.918 0.911 0.984 0.986 0.048 0.049 0.985 0.986 0.019 0.005 0.003
Q2 500 0.763 0.790 0.953 0.962 0.367 0.021 0.958 0.962 0.017 0.016 0.007
1000 0.826 0.856 0.967 0.975 0.257 0.004 0.971 0.975 0.016 0.011 0.005
2000 0.865 0.903 0.976 0.984 0.219 0.002 0.980 0.984 0.017 0.008 0.003
Q3 500 0.758 0.786 0.952 0.962 0.339 0.126 0.963 0.966 0.033 0.016 0.006
1000 0.815 0.861 0.964 0.976 0.251 0.089 0.972 0.979 0.034 0.010 0.005
2000 0.856 0.910 0.974 0.985 0.180 0.065 0.980 0.987 0.035 0.009 0.004
Q4 500 0.680 0.776 0.938 0.961 0.363 0.110 0.962 0.966 0.041 0.020 0.007
1000 0.721 0.853 0.950 0.975 0.288 0.064 0.968 0.978 0.041 0.015 0.005
2000 0.745 0.905 0.956 0.984 0.251 0.040 0.972 0.986 0.042 0.013 0.003
Q5 500 0.760 0.777 0.951 0.959 0.112 0.068 0.956 0.961 0.075 0.020 0.008
1000 0.835 0.851 0.968 0.975 0.082 0.041 0.972 0.976 0.073 0.011 0.004
2000 0.874 0.903 0.975 0.984 0.065 0.022 0.978 0.984 0.076 0.013 0.004
Q6 500 0.629 0.687 0.924 0.933 0.184 0.105 0.943 0.940 0.100 0.035 0.015
1000 0.656 0.744 0.931 0.942 0.173 0.097 0.949 0.949 0.102 0.038 0.017
2000 0.687 0.793 0.935 0.953 0.163 0.081 0.951 0.959 0.102 0.037 0.010


表4BIC方法和Stepwise方法在seq-RRUM模型中200次实验的平均结果
Q-matrix N PMR AMR FPR TPR RMSEA
Stepwise BIC Stepwise BIC Stepwise BIC Stepwise BIC QW QStepwise QBIC
Q1 500 0.750 0.841 0.952 0.975 0.083 0.022 0.952 0.975 0.006 0.007 0.006
1000 0.823 0.884 0.968 0.982 0.037 0.041 0.968 0.983 0.005 0.005 0.005
2000 0.864 0.915 0.976 0.987 0.029 0.020 0.977 0.987 0.004 0.005 0.004
Q2 500 0.746 0.839 0.953 0.975 0.332 0.199 0.958 0.978 0.027 0.008 0.007
1000 0.819 0.890 0.968 0.983 0.264 0.153 0.972 0.986 0.026 0.006 0.005
2000 0.843 0.919 0.974 0.988 0.252 0.117 0.978 0.990 0.026 0.005 0.003
Q3 500 0.734 0.847 0.949 0.976 0.300 0.121 0.959 0.980 0.022 0.008 0.006
1000 0.794 0.877 0.963 0.981 0.241 0.086 0.971 0.983 0.023 0.006 0.005
2000 0.843 0.914 0.973 0.987 0.171 0.057 0.979 0.989 0.023 0.005 0.003
Q4 500 0.714 0.832 0.946 0.974 0.275 0.123 0.963 0.981 0.030 0.008 0.007
1000 0.770 0.881 0.959 0.982 0.215 0.085 0.973 0.987 0.031 0.006 0.005
2000 0.796 0.917 0.966 0.987 0.195 0.058 0.978 0.991 0.032 0.005 0.003
Q5 500 0.751 0.841 0.952 0.975 0.098 0.047 0.956 0.976 0.039 0.008 0.006
1000 0.807 0.880 0.965 0.982 0.073 0.038 0.968 0.983 0.035 0.005 0.005
2000 0.849 0.914 0.974 0.987 0.053 0.021 0.976 0.987 0.039 0.005 0.004
Q6 500 0.686 0.817 0.941 0.968 0.134 0.063 0.953 0.973 0.063 0.014 0.008
1000 0.726 0.848 0.948 0.973 0.127 0.058 0.960 0.978 0.070 0.012 0.007
2000 0.748 0.896 0.953 0.982 0.120 0.032 0.966 0.984 0.063 0.009 0.004

表4BIC方法和Stepwise方法在seq-RRUM模型中200次实验的平均结果
Q-matrix N PMR AMR FPR TPR RMSEA
Stepwise BIC Stepwise BIC Stepwise BIC Stepwise BIC QW QStepwise QBIC
Q1 500 0.750 0.841 0.952 0.975 0.083 0.022 0.952 0.975 0.006 0.007 0.006
1000 0.823 0.884 0.968 0.982 0.037 0.041 0.968 0.983 0.005 0.005 0.005
2000 0.864 0.915 0.976 0.987 0.029 0.020 0.977 0.987 0.004 0.005 0.004
Q2 500 0.746 0.839 0.953 0.975 0.332 0.199 0.958 0.978 0.027 0.008 0.007
1000 0.819 0.890 0.968 0.983 0.264 0.153 0.972 0.986 0.026 0.006 0.005
2000 0.843 0.919 0.974 0.988 0.252 0.117 0.978 0.990 0.026 0.005 0.003
Q3 500 0.734 0.847 0.949 0.976 0.300 0.121 0.959 0.980 0.022 0.008 0.006
1000 0.794 0.877 0.963 0.981 0.241 0.086 0.971 0.983 0.023 0.006 0.005
2000 0.843 0.914 0.973 0.987 0.171 0.057 0.979 0.989 0.023 0.005 0.003
Q4 500 0.714 0.832 0.946 0.974 0.275 0.123 0.963 0.981 0.030 0.008 0.007
1000 0.770 0.881 0.959 0.982 0.215 0.085 0.973 0.987 0.031 0.006 0.005
2000 0.796 0.917 0.966 0.987 0.195 0.058 0.978 0.991 0.032 0.005 0.003
Q5 500 0.751 0.841 0.952 0.975 0.098 0.047 0.956 0.976 0.039 0.008 0.006
1000 0.807 0.880 0.965 0.982 0.073 0.038 0.968 0.983 0.035 0.005 0.005
2000 0.849 0.914 0.974 0.987 0.053 0.021 0.976 0.987 0.039 0.005 0.004
Q6 500 0.686 0.817 0.941 0.968 0.134 0.063 0.953 0.973 0.063 0.014 0.008
1000 0.726 0.848 0.948 0.973 0.127 0.058 0.960 0.978 0.070 0.012 0.007
2000 0.748 0.896 0.953 0.982 0.120 0.032 0.966 0.984 0.063 0.009 0.004


表5BIC方法和Stepwise方法在seq-GDINA模型中200次实验的平均结果
Q-matrix N PMR AMR FPR TPR RMSEA
Stepwise BIC Stepwise BIC Stepwise BIC Stepwise BIC QW QStepwise QBIC
Q1 500 0.795 0.861 0.961 0.979 0.075 0.006 0.962 0.979 0.007 0.007 0.007
1000 0.875 0.913 0.978 0.987 0.032 0.004 0.978 0.987 0.005 0.006 0.005
2000 0.919 0.950 0.986 0.993 0.020 0.001 0.986 0.993 0.004 0.005 0.004
Q2 500 0.799 0.864 0.964 0.980 0.209 0.211 0.967 0.983 0.029 0.008 0.009
1000 0.877 0.916 0.979 0.988 0.108 0.110 0.980 0.990 0.030 0.006 0.006
2000 0.915 0.948 0.986 0.993 0.093 0.067 0.987 0.994 0.030 0.004 0.004
Q3 500 0.794 0.867 0.961 0.980 0.236 0.125 0.969 0.984 0.022 0.007 0.008
1000 0.854 0.910 0.974 0.987 0.170 0.069 0.979 0.989 0.025 0.006 0.006
2000 0.904 0.949 0.984 0.993 0.106 0.038 0.988 0.994 0.025 0.005 0.003
Q4 500 0.775 0.863 0.958 0.979 0.193 0.106 0.970 0.985 0.033 0.009 0.008
1000 0.840 0.912 0.972 0.987 0.136 0.062 0.981 0.991 0.033 0.007 0.006
2000 0.884 0.945 0.981 0.992 0.112 0.040 0.989 0.994 0.034 0.005 0.004
Q5 500 0.786 0.866 0.959 0.980 0.086 0.040 0.962 0.981 0.034 0.009 0.009
1000 0.859 0.911 0.975 0.987 0.053 0.023 0.977 0.988 0.036 0.006 0.006
2000 0.912 0.949 0.985 0.993 0.031 0.011 0.987 0.993 0.041 0.005 0.004
Q6 500 0.731 0.838 0.948 0.973 0.122 0.059 0.960 0.978 0.061 0.015 0.009
1000 0.784 0.885 0.959 0.980 0.104 0.039 0.970 0.983 0.066 0.010 0.007
2000 0.913 0.948 0.985 0.992 0.037 0.015 0.987 0.993 0.041 0.004 0.004

表5BIC方法和Stepwise方法在seq-GDINA模型中200次实验的平均结果
Q-matrix N PMR AMR FPR TPR RMSEA
Stepwise BIC Stepwise BIC Stepwise BIC Stepwise BIC QW QStepwise QBIC
Q1 500 0.795 0.861 0.961 0.979 0.075 0.006 0.962 0.979 0.007 0.007 0.007
1000 0.875 0.913 0.978 0.987 0.032 0.004 0.978 0.987 0.005 0.006 0.005
2000 0.919 0.950 0.986 0.993 0.020 0.001 0.986 0.993 0.004 0.005 0.004
Q2 500 0.799 0.864 0.964 0.980 0.209 0.211 0.967 0.983 0.029 0.008 0.009
1000 0.877 0.916 0.979 0.988 0.108 0.110 0.980 0.990 0.030 0.006 0.006
2000 0.915 0.948 0.986 0.993 0.093 0.067 0.987 0.994 0.030 0.004 0.004
Q3 500 0.794 0.867 0.961 0.980 0.236 0.125 0.969 0.984 0.022 0.007 0.008
1000 0.854 0.910 0.974 0.987 0.170 0.069 0.979 0.989 0.025 0.006 0.006
2000 0.904 0.949 0.984 0.993 0.106 0.038 0.988 0.994 0.025 0.005 0.003
Q4 500 0.775 0.863 0.958 0.979 0.193 0.106 0.970 0.985 0.033 0.009 0.008
1000 0.840 0.912 0.972 0.987 0.136 0.062 0.981 0.991 0.033 0.007 0.006
2000 0.884 0.945 0.981 0.992 0.112 0.040 0.989 0.994 0.034 0.005 0.004
Q5 500 0.786 0.866 0.959 0.980 0.086 0.040 0.962 0.981 0.034 0.009 0.009
1000 0.859 0.911 0.975 0.987 0.053 0.023 0.977 0.988 0.036 0.006 0.006
2000 0.912 0.949 0.985 0.993 0.031 0.011 0.987 0.993 0.041 0.005 0.004
Q6 500 0.731 0.838 0.948 0.973 0.122 0.059 0.960 0.978 0.061 0.015 0.009
1000 0.784 0.885 0.959 0.980 0.104 0.039 0.970 0.983 0.066 0.010 0.007
2000 0.913 0.948 0.985 0.992 0.037 0.015 0.987 0.993 0.041 0.004 0.004


表6TIMSS 2011(8年级)数据Q矩阵及修正结果
Item Code 类别 A1 A2 A3 A4 A5 A6 A7
1 M042041 1 0 1 0 0 0 0 0
2 M042024 1 0 1 0 0 0 0 0
3 M042016 1 1 0 0 0 0 0 1*#
4 M042002 1 1 0 0 0 0 0 0
5 M042198A 1 0 0 1 0 0 0 0*#
6 M042198B 1 0 0 1 0 0 0 0
7 M042198C 1 0 0 1 0 0* 0 0
8 M042077 1 1 0 0 1 0 0 0
9 M042235 1 0 0 0 1 0* 0 0
10 M042150 1 0 0 0 0 1 0 0
11 M042300Z 1 0 0 0 0 0 1 1
11 M042300Z 2 0 0 0 0 1 0 0
12 M042169A 1 0* 0 0 0 0 0 1
13 M042169B 1 0 0 0 0 0 0 1
14 M042169C 1 0* 0 0 0 0 0 1
15 M032352 1 1 0 1*# 0 0 0 1*
16 M032725 1 0 1* 0 0 0 0*# 0
17 M032738 1 0 0 0 1 0 0 0
18 M032295 1 0 0 0 1 0 0 0
19 M032331 1 0 0 0 0 1 1 0
20 M032679 1 0 0 0 0 1 1* 0
21 M032047 1 1 0 0 1*# 0 0 0
22 M032398 1 0* 0 0 0 1 0 0
23 M032424 1 0 0*# 0 1 0 0 0

表6TIMSS 2011(8年级)数据Q矩阵及修正结果
Item Code 类别 A1 A2 A3 A4 A5 A6 A7
1 M042041 1 0 1 0 0 0 0 0
2 M042024 1 0 1 0 0 0 0 0
3 M042016 1 1 0 0 0 0 0 1*#
4 M042002 1 1 0 0 0 0 0 0
5 M042198A 1 0 0 1 0 0 0 0*#
6 M042198B 1 0 0 1 0 0 0 0
7 M042198C 1 0 0 1 0 0* 0 0
8 M042077 1 1 0 0 1 0 0 0
9 M042235 1 0 0 0 1 0* 0 0
10 M042150 1 0 0 0 0 1 0 0
11 M042300Z 1 0 0 0 0 0 1 1
11 M042300Z 2 0 0 0 0 1 0 0
12 M042169A 1 0* 0 0 0 0 0 1
13 M042169B 1 0 0 0 0 0 0 1
14 M042169C 1 0* 0 0 0 0 0 1
15 M032352 1 1 0 1*# 0 0 0 1*
16 M032725 1 0 1* 0 0 0 0*# 0
17 M032738 1 0 0 0 1 0 0 0
18 M032295 1 0 0 0 1 0 0 0
19 M032331 1 0 0 0 0 1 1 0
20 M032679 1 0 0 0 0 1 1* 0
21 M032047 1 1 0 0 1*# 0 0 0
22 M032398 1 0* 0 0 0 1 0 0
23 M032424 1 0 0*# 0 1 0 0 0


表7TIMSS 2011(8年级)数据不同方法Q矩阵修正一致率
Q Qoriginal QBIC QStepwise
Qoriginal 1
QBIC 0.92 1
QStepwise 0.96 0.95 1

表7TIMSS 2011(8年级)数据不同方法Q矩阵修正一致率
Q Qoriginal QBIC QStepwise
Qoriginal 1
QBIC 0.92 1
QStepwise 0.96 0.95 1


表8TIMSS 2011 (8年级)数据原有Q矩阵和两种方法修正后Q矩阵的拟合指标
Q 相对拟合指标 绝对拟合指标
-2*LL AIC BIC M2检验 RMSEA SRMSR
M2 df p
Qoriginal 18888.23 19274.23 20165.39 123.51 83 0.003 0.026 0.059
QBIC 18624.73 19014.73 19915.13 89.02 81 0.254 0.012 0.044
QStepwise 18757.88 19139.88 20021.88 89.90 85 0.337 0.009 0.050

表8TIMSS 2011 (8年级)数据原有Q矩阵和两种方法修正后Q矩阵的拟合指标
Q 相对拟合指标 绝对拟合指标
-2*LL AIC BIC M2检验 RMSEA SRMSR
M2 df p
Qoriginal 18888.23 19274.23 20165.39 123.51 83 0.003 0.026 0.059
QBIC 18624.73 19014.73 19915.13 89.02 81 0.254 0.012 0.044
QStepwise 18757.88 19139.88 20021.88 89.90 85 0.337 0.009 0.050


表9TIMSS 2007(4年级)数据Q矩阵及修正结果
Item Code 类别 A1 A2 A3 A4 A5 A6 A7 A8
1 M041052 1 1 1 0 0 0 0 0 0
2 M041281 1 0 1 1* 0 1* 0 0 0
3 M041275 1 1 0 0 0 0 1 0 1*
3 M041275 2 1* 0 0 0 0 1 0 1*
4 M031303 1 0 1 1 0 0 0 0 0
5 M031309 1 0 1 1 0 0 0 0 0
6 M031245 1 0 1 0 1 0 0 0 0
7 M031242A 1 0 1 1 0 1 0 0 0
7 M031242B 2 0 0 0 0 0 0 1 0
8 M031242C 1 0 1* 1* 0 1 0 1* 0
9 M031247 1 0 1* 1 1 0 0 0 0
9 M031247 2 0 1 1 1 0 0 0 0
10 M031173 1 0* 1* 1 0 0 0 0 0
11 M031172 1 1* 1* 0 0 0 1* 0 1

表9TIMSS 2007(4年级)数据Q矩阵及修正结果
Item Code 类别 A1 A2 A3 A4 A5 A6 A7 A8
1 M041052 1 1 1 0 0 0 0 0 0
2 M041281 1 0 1 1* 0 1* 0 0 0
3 M041275 1 1 0 0 0 0 1 0 1*
3 M041275 2 1* 0 0 0 0 1 0 1*
4 M031303 1 0 1 1 0 0 0 0 0
5 M031309 1 0 1 1 0 0 0 0 0
6 M031245 1 0 1 0 1 0 0 0 0
7 M031242A 1 0 1 1 0 1 0 0 0
7 M031242B 2 0 0 0 0 0 0 1 0
8 M031242C 1 0 1* 1* 0 1 0 1* 0
9 M031247 1 0 1* 1 1 0 0 0 0
9 M031247 2 0 1 1 1 0 0 0 0
10 M031173 1 0* 1* 1 0 0 0 0 0
11 M031172 1 1* 1* 0 0 0 1* 0 1







[1] Akaike H . ( 1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19( 6), 716-723.
doi: 10.5665/sleep.5436URLpmid: 26446118
[2] Chang H.-H . ( 2015). Psychometrics behind computerized adaptive testing. Psychometrika, 80( 1), 1-20.
doi: 10.1007/s11336-014-9401-5URLpmid: 24499939
[3] Chang H.-H., & Wang W. Y . ( 2016). ‘‘Internet plus’’ measurement and evaluation: A new way for adaptive learning. Journal of Jiangxi Normal University (Natural Science), 40( 5), 441-455.
[ 张华华, 汪文义 . ( 2016). “互联网+”测评: 自适应学习之路. 江西师范大学学报(自然科学版), 40( 5), 441-455.]
[4] Chen J. S .( 2017). A residual-based approach to validate Q-matrix specifications. Applied Psychological Measurement, 41( 4), 277-293.
doi: 10.1177/0146621616686021URLpmid: 29881093
[5] Chen J., de la Torre J., & Zhang Z . ( 2013). Relative and absolute fit evaluation in cognitive diagnosis modeling. Journal of Educational Measurement, 50( 2), 123-140.
doi: 10.1177/0146621617707510URLpmid: 29882533
[6] Chiu C.-Y . ( 2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37( 8), 598-618.
doi: 10.1177/0146621613488436URL
[7] de la Torre J . ( 2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45( 4), 343-362.
doi: 10.1111/jedm.2008.45.issue-4URL
[8] de la Torre J . ( 2011). The generalized DINA model framework. Psychometrika, 76( 2), 179-199.
doi: 10.1007/s11336-011-9207-7URL
[9] de la Torre J., & Chiu C.-Y . ( 2016). A general method of empirical Q-matrix validation. Psychometrika, 81( 2), 253-273.
doi: 10.1007/s11336-015-9467-8URLpmid: 25943366
[10] Haertel E . ( 1984). An application of latent class models to assessment data. Applied Psychological Measurement, 8( 3), 333-346.
doi: 10.1177/0163278719871090URLpmid: 31462073
[11] Hansen M . ( 2013). Hierarchical item response models for cognitive diagnosis (Unpublished doctoral dissertation). University of California at Los Angeles.
doi: 10.11646/zootaxa.4273.2.7URLpmid: 28610254
[12] Hartz, S., Hartz S., & Roussos L . ( 2008). The fusion model for skills diagnosis: Blending theory with practicality. Educational Testing Service, Research Report, RR-08-71. Princeton, NJ: Educational Testing Service.
[13] Lee Y.-S., Park Y. S., & Taylan D . ( 2011). A cognitive diagnostic modeling of attribute mastery in massachusetts, minnesota, and the U.S. national sample using the TIMSS 2007. International Journal of Testing, 11( 2), 144-177.
doi: 10.1080/15305058.2010.534571URL
[14] Liu Y., Tian W., & Xin T . ( 2016). An application of M2 statistic to evaluate the fit of cognitive diagnostic models. Journal of Educational and Behavioral Statistics, 41( 1), 3-26.
doi: 10.3102/1076998615621293URL
[15] Liu Y., Xin T., Andersson B., & Tian W . ( 2019). Information matrix estimation procedures for cognitive diagnostic models. British Journal of Mathematical and Statistical Psychology, 72( 1), 18-37.
doi: 10.1111/bmsp.12134URLpmid: 29508383
[16] Ma W., & de la Torre J . ( 2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69( 3), 253-275.
doi: 10.1111/bmsp.12070URLpmid: 27317397
[17] Ma W., & de la Torre J . ( 2019). An empirical Q‐matrix validation method for the sequential generalized DINA model. British Journal of Mathematical and Statistical Psychology. .
doi: 10.1111/bmsp.12194URLpmid: 31853965
[18] Maris E . ( 1999). Estimating multiple classification latent class models. Psychometrika, 64( 2), 187-212.
doi: 10.1016/j.jcrc.2018.06.012URLpmid: 29933169
[19] Park J. Y., Lee Y.-S., & Johnson M. S . ( 2017). An efficient standard error estimator of the DINA model parameters when analysing clustered data. International Journal of Quantitative Research in Education, 4( 1/2), 159-190.
doi: 10.1504/IJQRE.2017.086507URL
[20] Schwarz G . ( 1978). Estimating the dimension of a model. Annals of Statistics, 6( 2), 461-464.
doi: 10.1111/biom.13195URLpmid: 31797368
[21] Templin J. L., & Henson R. A . ( 2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11( 3), 287-305.
doi: 10.1037/1082-989X.11.3.287URLpmid: 16953706
[22] Tu D.-B., Cai Y., & Dai H.-Q . ( 2012). A new method of Q-Matrix validation based on DINA model. Acta Psychologica Sinica, 44( 4), 558-568.
[ 涂冬波, 蔡艳, 戴海琦 . ( 2012). 基于DINA模型的Q矩阵修正方法. 心理学报, 44( 4), 558-568.]
[23] Tu D.-B., Cai Y., Dai H.-Q., & Ding S.-L . ( 2010). A polytomous cognitive diagnosis model: P- DINA model. Acta Psychologica Sinica, 42( 10), 1011-1020.
[ 涂冬波, 蔡艳, 戴海琦, 丁树良 . ( 2010). 一种多级评分的认知诊断模型: P-DINA模型的开发. 心理学报, 42( 10), 1011-1020.]
[24] von Davier M . ( 2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61( 2), 287-307.
doi: 10.1348/000711007X193957URLpmid: 17535481
[25] Wang D.-X., Gao X.-L., Cai Y., & Tu D.-B . ( 2018). A new Q-matrix estimation method: ICC based on ideal response. Journal of Psychological Science, 41( 2), 466-474.
[ 汪大勋, 高旭亮, 蔡艳, 涂冬波 . ( 2018). 一种非参数化的Q矩阵估计方法: ICC-IR方法开发. 心理科学, 41( 2), 466-474.]
[26] Wang D.-X., Gao X.-L., Han Y.-T., & Tu D.-B . ( 2018). A simple and effective Q-matrix estimation method: From non-parametric perspective. Journal of Psychological Science, 41( 1), 180-188.
[ 汪大勋, 高旭亮, 韩雨婷, 涂冬波 . ( 2018). 一种简单有效的Q矩阵估计方法开发:基于非参数化方法视角. 心理科学, 41( 1), 180-188.]
[27] Xu G., & Shang Z .( 2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, .
doi: 10.1080/01621459.2018.1476239URLpmid: 31777410




[1]罗芬, 王晓庆, 蔡艳, 涂冬波. 基于基尼指数的双目标CD-CAT选题策略[J]. 心理学报, 2020, 52(12): 1452-1465.
[2]詹沛达,于照辉,李菲茗,王立君. 一种基于多阶认知诊断模型测评科学素养的方法[J]. 心理学报, 2019, 51(6): 734-746.
[3]高旭亮,汪大勋,王芳,蔡艳,涂冬波. 基于分部评分模型思路的多级评分认知诊断模型开发[J]. 心理学报, 2019, 51(12): 1386-1397.
[4]高椿雷;罗照盛;喻晓锋; 彭亚风;郑蝉金. CD-MST初始阶段模块组建方法比较[J]. 心理学报, 2016, 48(8): 1037-1046.
[5]康春花; 任平; 曾平飞. 多级评分聚类诊断法的影响因素[J]. 心理学报, 2016, 48(7): 891-902.
[6]郭磊; 郑蝉金; 边玉芳; 宋乃庆; 夏凌翔. 认知诊断计算机化自适应测验中新的选题策略:结合项目区分度指标[J]. 心理学报, 2016, 48(7): 903-914.
[7]刘彦楼;辛涛;李令青;田伟;刘笑笑. 改进的认知诊断模型项目功能差异检验方法 ——基于观察信息矩阵的Wald统计量[J]. 心理学报, 2016, 48(5): 588-598.
[8]詹沛达;边玉芳;王立君. 重参数化的多分属性诊断分类模型及其判准率影响因素[J]. 心理学报, 2016, 48(3): 318-330.
[9]彭亚风;罗照盛;喻晓锋;高椿雷;李喻骏. 认知诊断评价中测验结构的优化设计[J]. 心理学报, 2016, 48(12): 1600-1611.
[10]蔡艳;苗莹;涂冬波. 多级评分的认知诊断计算机化适应测验[J]. 心理学报, 2016, 48(10): 1338-1346.
[11]詹沛达;陈平;边玉芳. 使用验证性补偿多维IRT模型进行认知诊断评估[J]. 心理学报, 2016, 48(10): 1347-1356.
[12]康春花;任平;曾平飞. 非参数认知诊断方法:多级评分的聚类分析[J]. 心理学报, 2015, 47(8): 1077-1088.
[13]罗照盛;喻晓锋;高椿雷;李喻骏;彭亚风;王 睿;王钰彤. 基于属性掌握概率的认知诊断计算机化自适应测验选题策略[J]. 心理学报, 2015, 47(5): 679-688.
[14]詹沛达;李晓敏;王文中;边玉芳;王立君. 多维题组效应认知诊断模型[J]. 心理学报, 2015, 47(5): 689-701.
[15]罗照盛;李喻骏;喻晓锋;高椿雷;彭亚风. 一种基于Q矩阵理论朴素的认知诊断方法[J]. 心理学报, 2015, 47(2): 264-272.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4607
相关话题/心理 数据 指标 实验 江西师范大学