删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

统计学习的认知神经机制及其与语言的关系

本站小编 Free考研考试/2022-01-01

徐贵平1,2, 范若琳3, 金花4,5,6()
1暨南大学华文学院
2暨南大学应用语言学研究院, 广州 510610
3广东金融学院公共管理学院, 广州 510521
4教育部人文社会科学重点研究基地天津师范大学心理与行为研究院
5天津师范大学心理学部
6国民心理健康评估与促进协同创新中心, 天津 300387
收稿日期:2019-09-05出版日期:2020-09-15发布日期:2020-07-24
通讯作者:金花E-mail:jennyjin2@163.com

基金资助:* 国家自然科学基金青年项目(31900778);国家留学基金(留金项[2018]10038号);暨南大学华文学院发展基金(2019FZJJYB12)

The cognitive and neural mechanisms of statistical learning and its relationship with language

XU Guiping1,2, FAN Ruolin3, JIN Hua4,5,6()
1College of Chinese Language and Culture
2Institute of Applied Linguistics, Jinan University, Guangzhou, 510610, China
3School of Public Administration, Guangdong University of Finance, Guangzhou, 510521, China
4Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University
5Faculty of Psychology, Tianjin Normal University
6Center of Collaborative Innovation for Assessment and Promotion of Mental Health, Tianjin, 300387, China
Received:2019-09-05Online:2020-09-15Published:2020-07-24
Contact:JIN Hua E-mail:jennyjin2@163.com






摘要/Abstract


摘要: 统计学习是指个体在连续刺激流中发现转移概率等统计规律的过程, 在Saffran等(1996)的经典婴儿语音切分研究中首次被提出。大量研究证实了统计学习的普遍存在, 近期学界开始关注统计学习的特异性及其对认知的影响, 尤其是从学习过程及其特异性两个方面阐述统计学习的认知神经机制并揭示其和语言的交互作用。未来应从脑和行为的多模态数据视角, 丰富统计学习结果的行为和神经指标, 考察不同类型统计学习过程的动态神经活动模式, 建立统计学习行为和脑的关联, 深化对统计学习认知神经机制的认识, 在统计学习与语言交互作用的基础上, 从成人二语学习切入结合音乐统计学习训练探讨促进语言学习的统计学习干预手段。



图1视觉统计学习刺激材料(引自: Frost等, 2013)
图1视觉统计学习刺激材料(引自: Frost等, 2013)







[1] 宋新燕, 孟祥芝. (2012). 婴儿语音感知发展及其机制. 心理科学进展, 20(6), 843-852.
[2] 唐溢, 张智君, 曾玫媚, 黄可, 刘炜, 赵亚军. (2015). 基于名人面孔视觉特征和语义信息的视觉统计学习. 心理学报, 47(7), 837-850.
[3] 武秋艳, 邓园. (2012). 统计学习的认知机制及其神经基础. 生物化学与生物物理进展, 39(12), 1167-1173.
[4] Altvater-Mackensen, N., Jessen, S., & Grossmann, T. (2017). Brain responses reveal that infants' face discrimination is guided by statistical learning from distributional information. Developmental Science, 20(2), e12393. doi: 10.1111/desc. 12393
doi: 10.1111/desc.2017.20.issue-2URL
[5] Antovich, D. M., & Estes, K. G. (2018). Learning across languages: Bilingual experience supports dual language statistical word segmentation. Developmental Science, 21(2), e12548. doi: 10.1111/desc.12548
[6] Arciuli, J., & Simpson, I. C. (2011). Statistical learning in typically developing children: The role of age and speed of stimulus presentation. Developmental Science, 14(3), 464-473. doi: 10.1111/j.1467-7687.2009.00937.x
doi: 10.1111/j.1467-7687.2009.00937.xURLpmid: 21477186
[7] Arciuli, J., & Simpson, I. C. (2012). Statistical learning is related to reading ability in children and adults. Cognitive Science, 36(2), 286-304. doi: 10.1111/j.1551-6709.2011. 01200.x
URLpmid: 21974775
[8] Arnon, I. (2019). Statistical learning, implicit learning, and first language acquisition: A critical evaluation of two developmental predictions. Topics in Cognitive Science. 11(3), 504-519. doi: 10.1111/tops.12428
URLpmid: 31056836
[9] Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of conditional probability statistics by 8- month-old infants. Psychological Science, 9(4), 321-324.
[10] Batterink, L. J. (2017). Rapid statistical learning supporting word extraction from continuous speech. Psychological Science, 28(7), 921-928. doi: 10.1177/0956797617698226
URLpmid: 28493810
[11] Batterink, L. J., & Paller, K. A. (2017). Online neural monitoring of statistical learning. Cortex, 90, 31-45. doi: 10.1016/j.cortex.2017.02.004
doi: 10.1016/j.cortex.2017.02.004URLpmid: 28324696
[12] Batterink, L. J., & Paller, K. A. (2019). Statistical learning of speech regularities can occur outside the focus of attention. Cortex, 115, 56-71. doi: 10.1016/j.cortex.2019.01.013
doi: 10.1016/j.cortex.2019.01.013URLpmid: 30771622
[13] Batterink, L. J., Paller, K. A., & Reber, P. J. (2019). Understanding the neural bases of implicit and statistical learning. Topics in Cognitive Science. 11(3), 482-503 doi: 10.1111/tops.12420
doi: 10.1111/tops.12420URLpmid: 30942536
[14] Batterink, L. J., Reber, P. J., Neville, H. J., & Paller, K. A. (2015). Implicit and explicit contributions to statistical learning. Journal of Memory and Language, 83, 62-78. doi: 10.1016/j.jml.2015.04.004
doi: 10.1016/j.jml.2015.04.004URLpmid: 26034344
[15] Bertels, J., Franco, A., & Destrebecqz, A. (2012). How implicit is visual statistical learning? Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 1425-1431. doi: 10.1037/a0027210
URLpmid: 22329789
[16] Bulgarelli, F., Bosch, L., & Weiss, D. J. (2019). Multi-pattern visual statistical learning in monolinguals and bilinguals. Frontiers in Psychology, 10, 204. doi: 10.3389/fpsyg.2019. 00204
URLpmid: 30792682
[17] Carreiras, M., Seghier, M. L., Baquero, S., Estevez, A., Lozano, A., Devlin, J. T., & Price, C. J. (2009). An anatomical signature for literacy. Nature, 461(7266), 983-986. doi: 10.1038/nature08461
URLpmid: 19829380
[18] Christiansen, M. H., Conway, C. M., & Onnis, L. (2012). Similar neural correlates for language and sequential learning: Evidence from event-related brain potentials. Language and Cognitive Processes, 27(2), 231-256. doi: 10.1080/01690965.2011.606666
URLpmid: 23678205
[19] Conway, C. M., Pisoni, D. B., Anaya, E. M., Karpicke, J., & Henning, S. C. (2011). Implicit sequence learning in deaf children with cochlear implants. Developmental Science, 14(1), 69-82. doi: 10.1111/j.1467-7687.2010.00960.x
doi: 10.1111/j.1467-7687.2010.00960.xURLpmid: 21159089
[20] Cores-Bilbao, E., Fernandez-Corbacho, A., Machancoses, F. H., & Fonseca-Mora, M. C. (2019). A music-mediated language learning experience: Students' awareness of their socio-emotional skills. Frontiers in Psychology, 10, 2238. doi: 10.3389/fpsyg.2019.02238
doi: 10.3389/fpsyg.2019.02238URLpmid: 31636585
[21] Cunillera, T., Camara, E., Toro, J. M., Marco-Pallares, J., Sebastian-Galles, N., Ortiz, H., ... Rodriguez-Fornells, A. (2009). Time course and functional neuroanatomy of speech segmentation in adults. Neuroimage, 48(3), 541-553. doi: 10.1016/j.neuroimage.2009.06.069
doi: 10.1016/j.neuroimage.2009.06.069URLpmid: 19580874
[22] Cunillera, T., Toro, J. M., Sebastian-Galles, N., & Rodriguez- Fornells, A. (2006). The effects of stress and statistical cues on continuous speech segmentation: An event-related brain potential study. Brain Research, 1123(1), 168-178. doi: 10.1016/j.brainres.2006.09.046
URLpmid: 17064672
[23] D'Mello, A. M., & Gabrieli, J. D. E. (2018). Cognitive neuroscience of dyslexia. Language, Speech, and Hearing Services in Schools, 49(4), 798-809. doi: 10.1044/2018_ LSHSS-DYSLC-18-0020
doi: 10.1044/2018_LSHSS-DYSLC-18-0020URLpmid: 30458541
[24] Daikoku, T., Yatomi, Y., & Yumoto, M. (2017). Statistical learning of an auditory sequence and reorganization of acquired knowledge: A time course of word segmentation and ordering. Neuropsychologia, 95, 1-10. doi: 10.1016/ j.neuropsychologia.2016.12.006
URLpmid: 27939187
[25] Daltrozzo, J., Emerson, S. N., Deocampo, J., Singh, S., Freggens, M., Branum-Martin, L., & Conway, C. M. (2017). Visual statistical learning is related to natural language ability in adults: An ERP study. Brain and Language, 166, 40-51. doi: 10.1016/j.bandl.2016.12.005
doi: 10.1016/j.bandl.2016.12.005URLpmid: 28086142
[26] Das, T., Padakannaya, P., Pugh, K. R., & Singh, N. C. (2011). Neuroimaging reveals dual routes to reading in simultaneous proficient readers of two orthographies. Neuroimage, 54(2), 1476-1487. doi: 10.1016/j.neuroimage.2010.09.022
doi: 10.1016/j.neuroimage.2010.09.022URLpmid: 20854914
[27] de Bruin, A. (2019). Not all bilinguals are the same: A call for more detailed assessments and descriptions of bilingual experiences. Behavioral Sciences, 9(3), 33. doi: 10.3390/ bs9030033
[28] Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16(4), 234-244. doi: 10.1038/nrn3924
doi: 10.1038/nrn3924URLpmid: 25783611
[29] Deocampo, J. A., Smith, G. N. L., Kronenberger, W. G., Pisoni, D. B., & Conway, C. M. (2018). The role of statistical learning in understanding and treating spoken language outcomes in deaf children with cochlear implants. Language, Speech, and Hearing Services in Schools, 49(3S), 723-739. doi: 10.1044/2018_LSHSS-STLT1-17-0138
doi: 10.1044/2018_LSHSS-STLT1-17-0138URLpmid: 30120449
[30] Durrant, S. J., Cairney, S. A., & Lewis, P. A. (2013). Overnight consolidation aids the transfer of statistical knowledge from the medial temporal lobe to the striatum. Cerebral Cortex, 23(10), 2467-2478. doi: 10.1093/cercor/bhs244
doi: 10.1093/cercor/bhs244URLpmid: 22879350
[31] Elleman, A. M., Steacy, L. M., & Compton, D. L. (2019). The role of statistical learning in word reading and spelling development: More questions than answers. Scientific Studies of Reading, 23(1), 1-7. doi: 10.1080/10888438.2018. 1549045
doi: 10.1080/10888438.2018.1549045URLpmid: 30718941
[32] Erickson, L. C., & Thiessen, E. D. (2015). Statistical learning of language: Theory, validity, and predictions of a statistical learning account of language acquisition. Developmental Review, 37, 66-108.
doi: 10.1016/j.dr.2015.05.002URL
[33] Finn, A. S., Kharitonova, M., Holtby, N., & Sheridan, M. A. (2019). Prefrontal and hippocampal structure predict statistical learning ability in early childhood. Journal of Cognitive Neuroscience, 31(1), 126-137. doi: 10.1162/ jocn_a_01342
URLpmid: 30240309
[34] Fitzgerald, K., & Todd, J. (2018). Hierarchical timescales of statistical learning revealed by mismatch negativity to auditory pattern deviations. Neuropsychologia, 120, 25-34. doi: 10.1016/j.neuropsychologia.2018.09.015
URLpmid: 30268879
[35] Forest, T. A., Lichtenfeld, A., Alvarez, B., & Finn, A. S. (2019). Superior learning in synesthetes: Consistent grapheme- color associations facilitate statistical learning. Cognition, 186, 72-81. doi: 10.1016/j.cognition.2019.02.003
doi: 10.1016/j.cognition.2019.02.003URL
[36] Francois, C., Chobert, J., Besson, M., & Schon, D. (2013). Music training for the development of speech segmentation. Cerebral Cortex, 23(9), 2038-2043. doi: 10.1093/cercor/ bhs180
doi: 10.1093/cercor/bhs180URL
[37] Francois, C., & Schon, D. (2011). Musical expertise boosts implicit learning of both musical and linguistic structures. Cerebral Cortex, 21(10), 2357-2365. doi: 10.1093/cercor/ bhr022
doi: 10.1093/cercor/bhr022URL
[38] Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Domain generality versus modality specificity: The paradox of statistical learning. Trends in Cognitive Sciences, 19(3), 117-125. doi: 10.1016/j.tics.2014.12.010
doi: 10.1016/j.tics.2014.12.010URLpmid: 25631249
[39] Frost, R., Siegelman, N., Narkiss, A., & Afek, L. (2013). What predicts successful literacy acquisition in a second language? Psychological Science, 24(7), 1243-1252. doi: 10.1177/0956797612472207
doi: 10.1177/0956797612472207URLpmid: 23698615
[40] Gabay, Y., Thiessen, E. D., & Holt, L. L. (2015). Impaired statistical learning in developmental dyslexia. Journal of Speech, Language, and Hearing Research, 58(3), 934-945. doi: 10.1044/2015_JSLHR-L-14-0324
doi: 10.1044/2015_JSLHR-L-14-0324URLpmid: 25860795
[41] Goujon, A., Didierjean, A., & Thorpe, S. (2015). Investigating implicit statistical learning mechanisms through contextual cueing. Trends in Cognitive Sciences, 19(9), 524-533. doi: 10.1016/j.tics.2015.07.009
doi: 10.1016/j.tics.2015.07.009URLpmid: 26255970
[42] Hay, J. F., Pelucchi, B., Estes, K. G., & Saffran, J. R. (2011). Linking sounds to meanings: Infant statistical learning in a natural language. Cognitive Psychology, 63(2), 93-106. doi: 10.1016/j.cogpsych.2011.06.002
doi: 10.1016/j.cogpsych.2011.06.002URLpmid: 21762650
[43] Hu, W., Lee, H. L., Zhang, Q., Liu, T., Geng, L. B., Seghier, M. L., ... Price, C. J. (2010). Developmental dyslexia in Chinese and English populations: Dissociating the effect of dyslexia from language differences. Brain, 133(6), 1694-1706. doi: 10.1093/brain/awq106
[44] Hung, Y. H., Frost, S. J., Molfese, P., Malins, J. G., Landi, N., Mencl, W. E., ... Pugh, K. R. (2019). Common neural basis of motor sequence learning and word recognition and its relation with individual differences in reading skill. Scientific Studies of Reading, 23(1), 89-100. doi: 10.1080/ 10888438.2018.1451533
doi: 10.1080/10888438.2018.1451533URLpmid: 31105422
[45] Jeste, S. S., Kirkham, N., Senturk, D., Hasenstab, K., Sugar, C., Kupelian, C., ... Johnson, S. P. (2015). Electrophysiological evidence of heterogeneity in visual statistical learning in young children with ASD. Developmental Science, 18(1), 90-105. doi: 10.1111/desc.12188
doi: 10.1111/desc.12188URLpmid: 24824992
[46] Jost, E., Conway, C. M., Purdy, J. D., Walk, A. M., & Hendricks, M. A. (2015). Exploring the neurodevelopment of visual statistical learning using event-related brain potentials. Brain Research, 1597, 95-107. doi: 10.1016/ j.brainres.2014.10.017
URLpmid: 25475992
[47] Karuza, E. A., Newport, E. L., Aslin, R. N., Starling, S. J., Tivarus, M. E., & Bavelier, D. (2013). The neural correlates of statistical learning in a word segmentation task: An fMRI study. Brain and Language, 127(1), 46-54. doi: 10.1016/j.bandl.2012.11.007
doi: 10.1016/j.bandl.2012.11.007URLpmid: 23312790
[48] Kidd, E., & Arciuli, J. (2016). Individual differences in statistical learning predict children's comprehension of syntax. Child Development, 87(1), 184-193. doi: 10.1111/ cdev.12461
doi: 10.1111/cdev.12461URLpmid: 26510168
[49] Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83(2), B35-B42.
doi: 10.1016/s0010-0277(02)00004-5URLpmid: 11869728
[50] Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in humans. Science, 273(5280), 1399-1402.
doi: 10.1126/science.273.5280.1399URLpmid: 8703077
[51] Koelsch, S., Busch, T., Jentschke, S., & Rohrmeier, M. (2016). Under the hood of statistical learning: A statistical MMN reflects the magnitude of transitional probabilities in auditory sequences. Scientific Reports, 6, 19741. doi: 10.1038/srep19741
doi: 10.1038/srep19741URLpmid: 26830652
[52] Kramsch, C. (2014). Teaching foreign languages in an era of globalization: Introduction. The Modern Language Journal, 98(1), 296-311. doi: 10.1111/j.1540-4781.2014.12057.x
doi: 10.1111/j.1540-4781.2014.12057.xURL
[53] Krogh, L., Vlach, H. A., & Johnson, S. P. (2012). Statistical learning across development: Flexible yet constrained. Frontiers in Psychology, 3, 598. doi: 10.3389/fpsyg.2012. 00598
doi: 10.3389/fpsyg.2012.00598URLpmid: 23430452
[54] Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5(11), 831-843. doi: 10.1038/nrn1533
URLpmid: 15496861
[55] Kuhl, P. K., Stevenson, J., Corrigan, N. M., van den Bosch, J. J. F., Can, D. D., & Richards, T. (2016). Neuroimaging of the bilingual brain: Structural brain correlates of listening and speaking in a second language. Brain and Language, 162, 1-9. doi: 10.1016/j.bandl.2016.07.004
doi: 10.1016/j.bandl.2016.07.004URLpmid: 27490686
[56] Kuhl, P. K., Tsao, F. M., & Liu, H. M. (2003). Foreign- language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences of the United States of America, 100(15), 9096-9101. doi: 10.1073/ pnas.1532872100
[57] Kuo, L. J., Kim, T. J., Yang, X., Li, H., Liu, Y., Wang, H., ... Li, Y. (2015). Acquisition of Chinese characters: The effects of character properties and individual differences among second language learners. Frontiers in Psychology, 6, 986. doi: 10.3389/fpsyg.2015.00986
URLpmid: 26379562
[58] Lammertink, I., Boersma, P., Wijnen, F., & Rispens, J. (2017). Statistical learning in specific language impairment: A meta-analysis. Journal of Speech, Language, and Hearing Research, 60(12), 3474-3486. doi: 10.1044/2017_JSLHR- L-16-0439
doi: 10.1044/2017_JSLHR-L-16-0439URLpmid: 29149241
[59] Lim, S. J., Fiez, J. A., & Holt, L. L. (2019). Role of the striatum in incidental learning of sound categories. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4671-4680. doi: 10.1073/ pnas.1811992116
[60] Liu, L., & Kager, R. (2017). Statistical learning of speech sounds is most robust during the period of perceptual attunement. Journal of Experimental Child Psychology, 164, 192-208. doi: 10.1016/j.jecp.2017.05.013
doi: 10.1016/j.jecp.2017.05.013URLpmid: 28687119
[61] Lopez-Barroso, D., Ripolles, P., Marco-Pallares, J., Mohammadi, B., Munte, T. F., Bachoud-Levi, A. C., ... de Diego-Balaguer, R. (2015). Multiple brain networks underpinning word learning from fluent speech revealed by independent component analysis. Neuroimage, 110, 182-193. doi: 10.1016/j.neuroimage.2014.12.085
URLpmid: 25620492
[62] Mamiya, P. C., Richards, T. L., Coe, B. P., Eichler, E. E., & Kuhl, P. K. (2016). Brain white matter structure and COMT gene are linked to second-language learning in adults. Proceedings of the National Academy of Sciences of the United States of America, 113(26), 7249-7254. doi: 10.1073/ pnas.1606602113
[63] Milne, A. E., Petkov, C. I., & Wilson, B. (2018). Auditory and visual sequence learning in humans and monkeys using an artificial grammar learning paradigm. Neuroscience, 389, 104-117. doi: 10.1016/j.neuroscience.2017.06.059
doi: 10.1016/j.neuroscience.2017.06.059URLpmid: 28687306
[64] Misyak, J. B., Christiansen, M. H., & Tomblin, J. B. (2010). On-line individual differences in statistical learning predict language processing. Frontiers in Psychology, 1, 31. doi: 10.3389/fpsyg.2010.00031
doi: 10.3389/fpsyg.2010.00031URLpmid: 21833201
[65] Monroy, C. D., Gerson, S. A., Dominguez-Martinez, E., Kaduk, K., Hunnius, S., & Reid, V. (2019). Sensitivity to structure in action sequences: An infant event-related potential study. Neuropsychologia, 126, 92-101. doi: 10.1016/j.neuropsychologia.2017.05.007
doi: 10.1016/j.neuropsychologia.2017.05.007URLpmid: 28487250
[66] Monroy, C. D., Gerson, S. A., & Hunnius, S. (2017). Toddlers' action prediction: Statistical learning of continuous action sequences. Journal of Experimental Child Psychology, 157, 14-28. doi: 10.1016/j.jecp.2016.12.004
doi: 10.1016/j.jecp.2016.12.004URLpmid: 28103496
[67] Monroy, C. D., Meyer, M., Schroer, L., Gerson, S. A., & Hunnius, S. (2019). The infant motor system predicts actions based on visual statistical learning. Neuroimage, 185, 947-954. doi: 10.1016/j.neuroimage.2017.12.016
doi: 10.1016/j.neuroimage.2017.12.016URLpmid: 29225063
[68] Newport, E. L. (2016). Statistical language learning: Computational, maturational, and linguistic constraints. Language and Cognition, 8(3), 447-461. doi: 10.1017/ langcog.2016.20
doi: 10.1017/langcog.2016.20URLpmid: 28680505
[69] Onnis, L., & Thiessen, E. (2013). Language experience changes subsequent learning. Cognition, 126(2), 268-284. doi: 10.1016/j.cognition.2012.10.008
doi: 10.1016/j.cognition.2012.10.008URLpmid: 23200510
[70] Palmer, S. D., Hutson, J., & Mattys, S. L. (2018). Statistical learning for speech segmentation: Age-related changes and underlying mechanisms. Psychology and Aging, 33(7), 1035-1044. doi: 10.1037/pag0000292
doi: 10.1037/pag0000292URLpmid: 30247045
[71] Perkovic, S., & Orquin, J. L. (2018). Implicit statistical learning in real-world environments leads to ecologically rational decision making. Psychological Science, 29(1), 34-44. doi: 10.1177/0956797617733831
doi: 10.1177/0956797617733831URLpmid: 29068761
[72] Petersson, K. M., Folia, V., & Hagoort, P. (2012). What artificial grammar learning reveals about the neurobiology of syntax. Brain and Language, 120(2), 83-95. doi: 10.1016/ j.bandl.2010.08.003
URLpmid: 20943261
[73] Potter, C. E., Wang, T., & Saffran, J. R. (2017). Second language experience facilitates statistical learning of novel linguistic materials. Cognitive Science, 41(S4), 913-927. doi: 10.1111/cogs.12473
[74] Qi, Z., Sanchez Araujo, Y., Georgan, W. C., Gabrieli, J. D. E., & Arciuli, J. (2018). Hearing matters more than seeing: A cross-modality study of statistical learning and reading ability. Scientific Studies of Reading, 23(1), 101-115. doi: 10.1080/10888438.2018.1485680
[75] Raviv, L., & Arnon, I. (2018). The developmental trajectory of children's auditory and visual statistical learning abilities: Modality-based differences in the effect of age. Developmental Science, 21(4), e12593. doi: 10.1111/desc. 12593
URLpmid: 28901038
[76] Reeder, P. A., Newport, E. L., & Aslin, R. N. (2013). From shared contexts to syntactic categories: The role of distributional information in learning linguistic form- classes. Cognitive Psychology, 66(1), 30-54. doi: 10.1016/ j.cogpsych.2012.09.001
doi: 10.1016/j.cogpsych.2012.09.001URLpmid: 23089290
[77] Roser, M. E., Aslin, R. N., McKenzie, R., Zahra, D., & Fiser, J. (2015). Enhanced visual statistical learning in adults with autism. Neuropsychology, 29(2), 163-172. doi: 10.1037/ neu0000137
doi: 10.1037/neu0000137URLpmid: 25151115
[78] Roser, M. E., Fiser, J., Aslin, R. N., & Gazzaniga, M. S. (2011). Right hemisphere dominance in visual statistical learning. Journal of Cognitive Neuroscience, 23(5), 1088-1099. doi: 10.1162/jocn.2010.21508
doi: 10.1162/jocn.2010.21508URLpmid: 20433243
[79] Saffran, J. R. (2018). Statistical learning as a window into developmental disabilities. Journal of Neurodevelopmental Disorders, 10(1), 35. doi: 10.1186/s11689-018-9252-y
doi: 10.1186/s11689-018-9252-yURLpmid: 30541453
[80] Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926-1928. doi: 10.1126/science.274.5294.1926
doi: 10.1126/science.274.5294.1926URLpmid: 8943209
[81] Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 69, 181-203. doi: 10.1146/annurev-psych-122216-011805
doi: 10.1146/annurev-psych-122216-011805URLpmid: 28793812
[82] Saffran, J. R., Newport, E. L., Aslin, R. N., Tunick, R. A., & Barrueco, S. (1997). Incidental language learning: Listening (and learning) out of the corner of your ear. Psychological Science, 8(2), 101-105.
[83] Santolin, C., & Saffran, J. R. (2018). Constraints on statistical learning across species. Trends in Cognitive Sciences, 22(1), 52-63. doi: 10.1016/j.tics.2017.10.003
doi: 10.1016/j.tics.2017.10.003URLpmid: 29150414
[84] Sawi, O. M., & Rueckl, J. (2018). Reading and the neurocognitive bases of statistical learning. Scientific Studies of Reading, 23(1), 8-23. doi: 10.1080/10888438. 2018.1457681
URLpmid: 31105421
[85] Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M., & Turk-Browne, N. B. (2014). The necessity of the medial temporal lobe for statistical learning. Journal of Cognitive Neuroscience, 26(8), 1736-1747. doi: 10.1162/jocn_a_00578
doi: 10.1162/jocn_a_00578URLpmid: 24456393
[86] Schwab, J. F., Schuler, K. D., Stillman, C. M., Newport, E. L., Howard, J. H., & Howard, D. V. (2016). Aging and the statistical learning of grammatical form classes. Psychology and Aging, 31(5), 481-487. doi: 10.1037/pag0000110
doi: 10.1037/pag0000110URLpmid: 27294711
[87] Shufaniya, A., & Arnon, I. (2018). Statistical learning is not age-invariant during childhood: Performance improves with age across modality. Cognitive Science, 42(8), 3100-3115. doi: 10.1111/cogs.12692
doi: 10.1111/cogs.12692URLpmid: 30276848
[88] Siegelman, N., Bogaerts, L., & Frost, R. (2017). Measuring individual differences in statistical learning: Current pitfalls and possible solutions. Behavior Research Methods, 49(2), 418-432. doi: 10.3758/s13428-016-0719-z
doi: 10.3758/s13428-016-0719-zURLpmid: 26944577
[89] Siegelman, N., & Frost, R. (2015). Statistical learning as an individual ability: Theoretical perspectives and empirical evidence. Journal of Memory and Language, 81, 105-120. doi: 10.1016/j.jml.2015.02.001
doi: 10.1016/j.jml.2015.02.001URLpmid: 25821343
[90] Siok, W. T., Perfetti, C. A., Jin, Z., & Tan, L. H. (2004). Biological abnormality of impaired reading is constrained by culture. Nature, 431, 71-76.
doi: 10.1038/nature02865URLpmid: 15343334
[91] Slone, L. K., & Johnson, S. P. (2018). When learning goes beyond statistics: Infants represent visual sequences in terms of chunks. Cognition, 178, 92-102. doi: 10.1016/ j.cognition.2018.05.016
doi: 10.1016/j.cognition.2018.05.016URLpmid: 29842989
[92] Spencer, M., Kaschak, M. P., Jones, J. L., & Lonigan, C. J. (2015). Statistical learning is related to early literacy- related skills. Reading and Writing, 28(4), 467-490. doi: 10.1007/s11145-014-9533-0
doi: 10.1007/s11145-014-9533-0URLpmid: 26478658
[93] Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annual Review Neuroscience, 27, 279-306.
[94] Thiessen, E. D., Kronstein, A. T., & Hufnagle, D. G. (2013). The extraction and integration framework: A two-process account of statistical learning. Psychological Bulletin, 139(4), 792-814.
doi: 10.1037/a0030801URLpmid: 23231530
[95] Thiessen, E. D., Onnis, L., Hong, S. J., & Lee, K. S. (2019). Early developing syntactic knowledge influences sequential statistical learning in infancy. Journal of Experimental Child Psychology, 177, 211-221. doi: 10.1016/j.jecp.2018. 04.009
doi: 10.1016/j.jecp.2018.04.009URLpmid: 30227354
[96] Treiman, R., Kessler, B., Boland, K., Clocksin, H., & Chen, Z. (2018). Statistical learning and spelling: Older prephonological spellers produce more wordlike spellings than younger prephonological spellers. Child Development, 89(4), e431-e443. doi: 10.1111/cdev.12893
doi: 10.1111/cdev.12893URLpmid: 28686300
[97] Wang, T., & Saffran, J. R. (2014). Statistical learning of a tonal language: The influence of bilingualism and previous linguistic experience. Frontiers in Psychology, 5, 953. doi: 10.3389/fpsyg.2014.00953
doi: 10.3389/fpsyg.2014.00953URLpmid: 25232344
[98] Yu, A., Chen, M. S. Y., Cherodath, S., Hung, D. L., Tzeng, O. J. L., & Wu, D. H. (2019). Neuroimaging evidence for sensitivity to orthography-to-phonology conversion in native readers and foreign learners of Chinese. Journal of Neurolinguistics, 50, 53-70. doi: 10.1016/j.jneuroling.2018. 07.002
[99] Zhao, T. C., & Kuhl, P. K. (2016). Musical intervention enhances infants' neural processing of temporal structure in music and speech. Proceedings of the National Academy of Sciences of the United States of America, 113(19), 5212-5217. doi: 10.1073/pnas.1603984113




[1]隋雪, 史汉文, 李雨桐. 语言加工过程中的观点采择及其认知机制[J]. 心理科学进展, 2021, 29(6): 990-999.
[2]于文勃, 王璐, 程幸悦, 王天琳, 张晶晶, 梁丹丹. 语言经验对概率词切分的影响[J]. 心理科学进展, 2021, 29(5): 787-795.
[3]肖承丽, 隋雨檠, 肖苏衡, 周仁来. 空间交互研究新视角:多重社会因素的影响[J]. 心理科学进展, 2021, 29(5): 796-805.
[4]黄观澜, 周晓璐. 抑郁症患者的语言使用模式[J]. 心理科学进展, 2021, 29(5): 838-848.
[5]殷融. “动手不动口”:手部动作与语言进化的关系[J]. 心理科学进展, 2020, 28(7): 1141-1155.
[6]赵英, 伍新春, 谢瑞波, 冯杰, 孙鹏, 陈红君. 视觉语言对听觉障碍人群阅读能力的0影响及作用机制[J]. 心理科学进展, 2020, 28(6): 969-977.
[7]柳武妹, 马增光, 叶富荣. 营销领域中包装元素对消费者的影响及其内在作用机制[J]. 心理科学进展, 2020, 28(6): 1015-1028.
[8]伍可, 陈杰, 李雯婕, 陈洁佳, 刘雷, 刘翠红. 人声加工的神经机制[J]. 心理科学进展, 2020, 28(5): 752-765.
[9]王潇, 吴国榕, 吴欣然, 邱江, 陈红. 语言功能偏侧化及其与利手、功能连接的关系[J]. 心理科学进展, 2020, 28(5): 778-789.
[10]吴小菊, 陈俊芳, 符佳慧, 李纾, 梁竹苑. 健康领域的跨期决策与健康行为[J]. 心理科学进展, 2020, 28(11): 1926-1938.
[11]李才文, 臧奋英, 禤宇明, 傅小兰. 对威胁刺激的碰撞时间估计[J]. 心理科学进展, 2020, 28(10): 1650-1661.
[12]谢书书, 张积家. 颜色类别知觉效应的机制:语言的作用[J]. 心理科学进展, 2019, 27(8): 1384-1393.
[13]韩海宾, 许萍萍, 屈青青, 程茜, 李兴珊. 语言加工过程中的视听跨通道整合[J]. 心理科学进展, 2019, 27(3): 475-489.
[14]程凯文, 邓颜蕙, 颜红梅. 第二语言学习与脑可塑性[J]. 心理科学进展, 2019, 27(2): 209-220.
[15]张晶晶, 杨玉芳. 语言和音乐层级结构的加工[J]. 心理科学进展, 2019, 27(12): 2043-2051.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5150
相关话题/心理 统计 科学 语言 神经

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 不同注意形式调节听感觉门控的神经机制
    雷铭(),李朋波北京第二外国语学院旅游科学学院,北京100024收稿日期:2020-02-22出版日期:2020-08-15发布日期:2020-06-28通讯作者:雷铭E-mail:minglei@bisu.edu.cn基金资助:*国家自然科学基金青年项目(31800923);北京市教委社科重点项目 ...
    本站小编 Free考研考试 2022-01-01
  • 新生儿语音感知的神经基础:元分析
    陈钰,莫李澄,毕蓉,张丹丹()深圳大学心理学院,深圳518060收稿日期:2020-04-22出版日期:2020-08-15发布日期:2020-06-28通讯作者:张丹丹E-mail:zhangdd05@gmail.com基金资助:*国家自然科学基金项目(31970980);深圳市基础研究自由探索项 ...
    本站小编 Free考研考试 2022-01-01
  • 气温与气温变化对心理健康的影响
    俞国良1,陈婷婷2,赵凤青2()1中国人民大学心理研究所,北京1008722郑州大学教育学院,郑州450001收稿日期:2019-12-11出版日期:2020-08-15发布日期:2020-06-28通讯作者:赵凤青E-mail:susanfair@163.com基金资助:*教育部人文社会科学研究项 ...
    本站小编 Free考研考试 2022-01-01
  • 瞳孔是心灵的窗口吗?——瞳孔在心理学研究中的应用及测量
    杨晓梦,王福兴(),王燕青,赵婷婷,高春颍,胡祥恩()华中师范大学心理学院,武汉430079收稿日期:2019-06-03出版日期:2020-07-15发布日期:2020-05-21通讯作者:王福兴,胡祥恩E-mail:fxwang@mail.ccnu.edu.cn;xiangenhu@mail.c ...
    本站小编 Free考研考试 2022-01-01
  • “动手不动口”:手部动作与语言进化的关系
    殷融()潍坊学院教师教育学院,山东潍坊261061收稿日期:2019-08-06出版日期:2020-07-15发布日期:2020-05-21通讯作者:殷融E-mail:yorkns@sina.cn基金资助:*山东省高校科研项目(J18RA139)Usegestureinsteadofspeech:H ...
    本站小编 Free考研考试 2022-01-01
  • 语义认知的习得、发展和老化及其神经机制
    程士静,何文广()曲阜师范大学教育学院,山东曲阜273165收稿日期:2019-08-19出版日期:2020-07-15发布日期:2020-05-21通讯作者:何文广E-mail:hewenguang1022@163.com基金资助:*国家社科基金资助(18BYY092)Theacquisition ...
    本站小编 Free考研考试 2022-01-01
  • 心理治疗中的脱落
    何姣1,白宝玉2(),夏勉31武汉大学学生工作部大学生心理健康教育中心2武汉大学哲学学院心理学系,武汉4300723华中师范大学心理学院,武汉430079收稿日期:2019-09-30出版日期:2020-07-15发布日期:2020-05-21通讯作者:白宝玉E-mail:psy_bby@163.c ...
    本站小编 Free考研考试 2022-01-01
  • 视觉语言对听觉障碍人群阅读能力的影响及作用机制
    赵英,伍新春(),谢瑞波,冯杰,孙鹏,陈红君北京师范大学心理学部,应用实验心理北京市重点实验室,儿童阅读与学习研究中心,北京100875收稿日期:2019-06-10出版日期:2020-06-15发布日期:2020-04-22通讯作者:伍新春E-mail:xcwu@bnu.edu.cn基金资助:*国 ...
    本站小编 Free考研考试 2022-01-01
  • 慈悲冥想对利他行为的影响及其认知神经机制
    金国敏,李丹()上海师范大学心理学系,上海200234收稿日期:2019-09-05出版日期:2020-06-15发布日期:2020-04-22通讯作者:李丹E-mail:lidan501@126.com基金资助:*上海市教委科研创新计划重大项目(2019-01-07-00-02-E00005)Th ...
    本站小编 Free考研考试 2022-01-01
  • 行为贫困陷阱的心理机制与管理对策:基于认知与动机双视角
    徐富明1,黄龙2,3(),张慧4,相鹏5(),刘腾飞6,李亚红71南宁师范大学教育科学学院,南宁5302992皖南医学院人文与管理学院,芜湖3410023江西师范大学心理学院,南昌3300224华中科技大学社会学院,武汉4300745南京财经大学法学院,南京2100236广东医科大学人文与管理学院, ...
    本站小编 Free考研考试 2022-01-01