北京第二外国语学院旅游科学学院, 北京 100024
收稿日期:
2020-02-22出版日期:
2020-08-15发布日期:
2020-06-28通讯作者:
雷铭E-mail:minglei@bisu.edu.cn基金资助:
* 国家自然科学基金青年项目(31800923);北京市教委社科重点项目(SZ201910031017);北京市教委青年拔尖人才项目(CIT&TCD201904068);北京第二外国语学院青年学术拔尖人才(团队)计划项目资助Neural mechanism underlying the attentional modulation of auditory sensory gating
LEI Ming(), LI PengboSchool of Tourism Sciences, Beijing International Studies University, Beijing 100024, China
Received:
2020-02-22Online:
2020-08-15Published:
2020-06-28Contact:
LEI Ming E-mail:minglei@bisu.edu.cn摘要/Abstract
摘要: 前脉冲抑制(prepulse inhibition, PPI)是听感觉门控的测量模型, 反映了听觉系统的早期信息选择功能。尽管PPI的主要神经环路位于脑干, 研究发现PPI可以被注意自上而下调节。然而, 已有研究并未区分不同注意(特征注意和空间注意)对PPI的特异性调节, 并且神经机制方面的研究集中于听皮层区域, 仍缺乏对皮层下机制的探讨。在以往研究的成果基础之上, 借助听觉信息加工的双通路模型, 采用行为测量、脑电和脑成像技术, 揭示特征和空间两种注意调节PPI的神经活动在听觉系统中的层次性神经表达。包括1)建立特征注意和空间注意调节PPI的统一行为模型, 考察两种注意调节PPI的时间动态性异同; 2)两种注意调节PPI的脑干分离机制, 即前脉冲刺激包络和精细结构成分加工在注意调节PPI中的作用差异; 3)两种注意调节PPI的关键脑区和脑网络差异。
图/表 3
图1惊反射和前脉冲抑制示意图。惊刺激单独呈现时, 惊反射幅度较大(上图); 惊刺激呈现之前的短时间内出现的前脉冲刺激会抑制随后出现的惊刺激引起的惊反射(下图), 被称为前脉冲抑制(PPI)
图1惊反射和前脉冲抑制示意图。惊刺激单独呈现时, 惊反射幅度较大(上图); 惊刺激呈现之前的短时间内出现的前脉冲刺激会抑制随后出现的惊刺激引起的惊反射(下图), 被称为前脉冲抑制(PPI)
图2知觉空间分离示意图。A声音(音乐符号)和B声音(宽波符号)之间物理关系(图a), 知觉空间分离(图b)和知觉空间重合(图c)
图2知觉空间分离示意图。A声音(音乐符号)和B声音(宽波符号)之间物理关系(图a), 知觉空间分离(图b)和知觉空间重合(图c)
图3本研究研究内容示意图
图3本研究研究内容示意图
参考文献 82
[1] | 杜忆, 李量. (2011). 对听感觉运动门控自上而下调节的动物模型和神经机制. 心理科学进展, 19(7), 944-958. |
[2] | 雷铭, 田晴, 王传跃, 李量. (2017). 精神疾病前脉冲抑制研究. 中华行为医学与脑科学杂志, 26(2), 188-192. |
[3] | Aiken, S. J., & Picton, T. W. (2008). Envelope and spectral frequency-following responses to vowel sounds. Hearing Research, 245(1-2), 35-47. doi: 10.1016/j.heares.2008.08.004URLpmid: 18765275 |
[4] | Akhoun, I., Gallégo, S., Moulin, A., Ménard, M., Veuillet, E., Bergervachon, C., ... Thaivan, H. (2008). The temporal relationship between speech auditory brainstem responses and the acoustic pattern of the phoneme /ba/ in normal-hearing adults. Clinical Neurophysiology, 119(4), 922-933. doi: 10.1016/j.clinph.2007.12.010URLpmid: 18291717 |
[5] | Ananthakrishnan, S., Krishnan, A., & Bartlett, E. (2016). Human frequency following response: Neural representation of envelope and temporal fine structure in listeners with normal hearing and sensorineural hearing Loss. Ear and Hearing, 37(2), e91-e103. doi: 10.1097/AUD.0000000000000247URLpmid: 26583482 |
[6] | Arnott, S. R., Binns, M. A., Grady, C. L., & Alain, C. (2004). Assessing the auditory dual-pathway model in humans. NeuroImage, 22(1), 401-408. URLpmid: 15110033 |
[7] | Blumenthal, T. D., Reynolds, J. Z., & Spence, T. E. (2015). Support for the interruption and protection hypotheses of prepulse inhibition of startle: Evidence from a modified attention network test. Psychophysiology, 52(3), 397-406. doi: 10.1111/psyp.12334URLpmid: 25234706 |
[8] | Braff, D., Stone, C., Callaway, E., Geyer, M., Glick, I., & Bali, L. (1978). Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology, 15(4), 339-343. doi: 10.1111/j.1469-8986.1978.tb01390.xURLpmid: 693742 |
[9] | Campbell, L. E., Hughes, M., Budd, T. W., Cooper, G., Fulham, W. R., Karayanidis, F., ... Schall, U. (2007). Primary and secondary neural networks of auditory prepulse inhibition: A functional magnetic resonance imaging study of sensorimotor gating of the human acoustic startle response. European Journal of Neuroscience, 26(8), 2327-2333. doi: 10.1111/j.1460-9568.2007.05858.xURLpmid: 17908169 |
[10] | Chandrasekaran, B., & Kraus, N. (2010). The scalp-recorded brainstem response to speech: Neural origins and plasticity. Psychophysiology, 47(2), 236-246. doi: 10.1111/j.1469-8986.2009.00928.xURLpmid: 19824950 |
[11] | Chen, J., He, Y., Zhu, Z., Zhou, T., Peng, Y., Zhang, X., & Fang, F. (2014). Attention-dependent early cortical suppression contributes to crowding. The Journal of Neuroscience, 34(32), 10465-10474. doi: 10.1523/JNEUROSCI.1140-14.2014URLpmid: 25100582 |
[12] | Chimento, T. C., & Schreiner, C. E. (1990). Selectively eliminating cochlear microphonic contamination from the frequency-following response. Electroencephalography and Clinical Neurophysiology, 75(1-2), 88-96. |
[13] | Coffey, E. B., Musacchia, G., & Zatorre, R. J. (2017). Cortical correlates of the auditory frequency-following and onset responses: EEG and fMRI evidence. Journal of Neuroscience, 37(4), 830-838. doi: 10.1523/JNEUROSCI.1265-16.2016URLpmid: 28123019 |
[14] | Crowley, K. E., & Colrain, I. M. (2004). A review of the evidence for P2 being an independent component process: Age, sleep and modality. Clinical Neurophysiology, 115(4), 732-744. doi: 10.1016/j.clinph.2003.11.021URLpmid: 15003751 |
[15] | Csomor, P. A., Preller, K. H., Geyer, M. A., Studerus, E., Huber, T., & Vollenweider, F. X. (2014). Influence of aripiprazole, risperidone, and amisulpride on sensory and sensorimotor gating in healthy “low and high gating” humans and relation to psychometry. Neuropsychopharmacology, 39(10), 2485-2496. doi: 10.1038/npp.2014.102URLpmid: 24801767 |
[16] | Davis, M. (2006). Neural systems involved in fear and anxiety measured with fear-potentiated startle. American Psychologist, 61(8), 741-752. doi: 10.1037/0003-066X.61.8.741URLpmid: 17115806 |
[17] | Dawson, M. E., Hazlett, E. A., Filion, D. L., Nuechterlein, K. H., & Schell, A. M. (1993). Attention and schizophrenia: Impaired modulation of the startle reflex. Journal of Abnormal Psychology, 102(4), 633-641. doi: 10.1037//0021-843x.102.4.633URLpmid: 8282934 |
[18] | Dawson, M. E., Schell, A. M., Hazlett, E. A., Nuechterlein, K. H., & Filion, D. L. (2000). On the clinical and cognitive meaning of impaired sensorimotor gating in schizophrenia. Psychiatry Research, 96(3), 187-197. doi: 10.1016/s0165-1781(00)00208-0URLpmid: 11084215 |
[19] | de Haan, E. H. F., & Cowey, A. (2011). On the usefulness of “what” and “where” pathways in vision. Trends in Cognitive Sciences, 15(10), 460-466. doi: 10.1016/j.tics.2011.08.005URLpmid: 21906989 |
[20] | Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158-164. doi: 10.1038/nn.4186URLpmid: 26642090 |
[21] | Ding, N., Patel, A.D., Chen, L., Butler, H., Luo, C., & Poeppel, D. (2017). Temporal modulations in speech and music. Neuroscience and Biobehavioral Reviews, 81, 181-197. doi: 10.1016/j.neubiorev.2017.02.011URLpmid: 28212857 |
[22] | Ding, Y., Xu, N., Gao, Y., Wu, Z., & Li, L. (2019). The role of the deeper layers of the superior colliculus in attentional modulations of prepulse inhibition. Behavioural Brain Research, 364, 106-113. doi: 10.1016/j.bbr.2019.01.052URLpmid: 30707906 |
[23] | Du, Y., Kong, L., Wang, Q., Wu, X., & Li, L. (2011a). Auditory frequency-following response: A neurophysiological measure for studying the "cocktail-party problem". Neuroscience and Biobehavioral Reviews, 35(10), 2046-2057. doi: 10.1016/j.neubiorev.2011.05.008URLpmid: 21645541 |
[24] | Du, Y., Li, J. Y., Wu, X. H., & Li, L. (2009). Precedence-effect-induced enhancement of prepulse inhibition in socially reared but not isolation-reared rats. Cognitive Affective & Behavioral Neuroscience, 9, 44-58. |
[25] | Du, Y., Wu, X., & Li, L. (2010). Emotional learning enhances stimulus-specific top-down modulation of sensorimotor gating in socially reared rats but not isolation-reared rats. Behavioural Brain Research, 206(2), 192-201. doi: 10.1016/j.bbr.2009.09.012URLpmid: 19761801 |
[26] | Du, Y., Wu, X., & Li, L. (2011b). Differentially organized top-down modulation of prepulse inhibition of startle. The Journal of Neuroscience, 31(38), 13644-13653. doi: 10.1523/JNEUROSCI.1292-11.2011URLpmid: 21940455 |
[27] | Filion, D. L., Dawson, M. E., & Schell, A. M. (1998). The psychological significance of human startle eyeblink modification: A review. Biological Psychology, 47(1), 1-43. doi: 10.1016/s0301-0511(97)00020-3URLpmid: 9505132 |
[28] | Freyman, R. L., Balakrishnan, U., & Helfer, K. S. (2004). Effect of number of masking talkers and auditory priming on informational masking in speech recognition. The Journal of the Acoustical Society of America, 115(5), 2246-2256. doi: 10.1121/1.1689343URL |
[29] | Freyman, R. L., Balakrishnan, U., & Helfer, K. S. (2008). Spatial release from masking with noise-vocoded speech. The Journal of the Acoustical Society of America, 124(3), 1627-1637. doi: 10.1121/1.2951964URLpmid: 19045654 |
[30] | Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007). Auditory attention—focusing the searchlight on sound. Current Opinion in Neurobiology, 17(4), 437-455. doi: 10.1016/j.conb.2007.07.011URLpmid: 17714933 |
[31] | Galbraith, G. C. (1994). Two-channel brain-stem frequency- following responses to pure tone and missing fundamental stimuli. Electroencephalography and Clinical Neurophysiology, 92(4), 321-330. URLpmid: 7517854 |
[32] | Galbraith, G. C., Olfman, D. M., & Huffman, T. M. (2003). Selective attention affects human brain stem frequency- following response. Neuroreport, 14(5), 735-738. doi: 10.1097/00001756-200304150-00015URLpmid: 12692473 |
[33] | Glaser, E. M., Suter, C. M., Dasheiff, R., & Goldberg, A. (1976). The human frequency-following response: Its behavior during continuous tone and tone burst stimulation. Electroencephalography and Clinical Neurophysiology, 40(1), 25-32. doi: 10.1016/0013-4694(76)90176-0URLpmid: 55345 |
[34] | Goodale, M. A., & Milner, A. D. (1992). Separate Visual Pathways for Perception and Action. Trends in Neurosciences, 15(1), 20-25. doi: 10.1016/0166-2236(92)90344-8URLpmid: 1374953 |
[35] | Graham, F. (1975). The more or less startling effects of weak prestimulation. Psychophysiology, 12(3), 238-248. doi: 10.1111/j.1469-8986.1975.tb01284.xURLpmid: 1153628 |
[36] | Hairston, W. D., Letowski, T. R., & Mcdowell, K. (2013). Task-related suppression of the brainstem frequency following response. PloS One, 8(2), e55215. doi: 10.1371/journal.pone.0055215URLpmid: 23441150 |
[37] | Hazlett, E. A., Buchsbaum, M. S., Tang, C. Y., Fleischman, M. B., Wei, T. C., Byne, W., & Haznedar, M. M. (2001). Thalamic activation during an attention-to-prepulse startle modification paradigm: A functional MRI study. Biological Psychiatry, 50(4), 281-291. doi: 10.1016/s0006-3223(01)01094-0URLpmid: 11522263 |
[38] | Hazlett, E. A., Levine, J., Buchsbaum, M. S., Silverman, J. M., New, A., Sevin, E. M., ... Siever, L. J. (2003). Deficient attentional modulation of the startle response in patients with schizotypal personality disorder. American Journal of Psychiatry, 160(9), 1621-1626. doi: 10.1176/appi.ajp.160.9.1621URLpmid: 12944337 |
[39] | Hazlett, E. A., Romero, M. J., Haznedar, M. M., New, A. S., Goldstein, K. E., Newmark, R. E., ... Buchsbaum, M. S. (2007). Deficient attentional modulation of startle eyeblink is associated with symptom severity in the schizophrenia spectrum. Schizophrenia Research, 93(1-3), 288-295. doi: 10.1016/j.schres.2007.03.012URLpmid: 17478083 |
[40] | Javitt, D. C., & Sweet, R. A. (2015). Auditory dysfunction in schizophrenia: Integrating clinical and basic features. Nature Reviews Neuroscience, 16(9), 535-550. doi: 10.1038/nrn4002URLpmid: 26289573 |
[41] | Jones, L. A., Hills, P. J., Dick, K. M., Jones, S. P., & Bright, P. (2016). Cognitive mechanisms associated with auditory sensory gating. Brain and Cognition, 102, 33-45. doi: 10.1016/j.bandc.2015.12.005URLpmid: 26716891 |
[42] | Kraus, N., Anderson, S., & White-Schwoch, T. (2017). The Frequency-following response: A window into human communication. Boston, MA: Springer International Publishing. |
[43] | Krishnan, A., Xu, Y., Gandour, J. T., & Cariani, P. A. (2004). Human frequency-following response: Representation of pitch contours in Chinese tones. Hearing Research, 189(1-2), 1-12. doi: 10.1016/S0378-5955(03)00402-7URLpmid: 14987747 |
[44] | Kumari, V., Antonova, E., & Geyer, M. A. (2008). Prepulse inhibition and "psychosis-proneness" in healthy individuals: An fMRI study. European Psychiatry, 23(4), 274-280. URLpmid: 18222069 |
[45] | Landis, C., & Hunt, W. A. (Eds.). (1939). The startle pattern. New York: Farrar and Rinehart. |
[46] | Lehmann, A., & Sch?nwiesner, M. (2014). Selective attention modulates human auditory brainstem responses: Relative contributions of frequency and spatial cues. PloS One, 9(1), e85442. doi: 10.1371/journal.pone.0085442URLpmid: 24454869 |
[47] | Lei, M., Luo, L., Qu, T., Jia, H., & Li, L. (2014). Perceived location specificity in perceptual separation-induced but not fear conditioning-induced enhancement of prepulse inhibition in rats. Behavioural Brain Research, 269, 87-94. doi: 10.1016/j.bbr.2014.04.030URLpmid: 24780867 |
[48] | Lei, M., Zhang, C., & Li, L. (2018). Neural correlates of perceptual separation-induced enhancement of prepulse inhibition of startle in humans. Scientific Reports, 8(1), 1-10. doi: 10.1038/s41598-017-17765-5URLpmid: 29311619 |
[49] | Li, L., Du, Y., Li, N., Wu, X., & Wu, Y. (2009). Top-down modulation of prepulse inhibition of the startle reflex in humans and rats. Neuroscience & Biobehavioral Reviews, 33(8), 1157-1167. doi: 10.1016/j.neubiorev.2009.02.001URLpmid: 19747594 |
[50] | Li, L., Qi, J. G., He, Y., Alain, C., & Schneider, B. A. (2005). Attribute capture in the precedence effect for long-duration noise sounds. Hearing Research, 202(1-2), 235-247. doi: 10.1016/j.heares.2004.10.007URLpmid: 15811715 |
[51] | Luo, L., Wang, Q., & Li, L. (2017). Neural representations of concurrent sounds with overlapping spectra in rat inferior colliculus: Comparisons between temporal-fine structure and envelope. Hearing Research, 353, 87-96. doi: 10.1016/j.heares.2017.06.005URLpmid: 28655419 |
[52] | Marsh, J. T., Worden, F. G., & Smith, J. C. (1970). Auditory frequency-following response: Neural or artifact? Science, 169(3951), 1222-1223. doi: 10.1126/science.169.3951.1222URLpmid: 5450700 |
[53] | Meng, Q., Ding, Y., Chen, L., & Li, L. (2020). The medial agranular cortex mediates attentional enhancement of prepulse inhibition of the startle reflex. Behavioural Brain Research, 383, 112511. doi: 10.1016/j.bbr.2020.112511URLpmid: 31987934 |
[54] | Musacchia, G., Sams, M., Skoe, E., & Kraus, N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15894-15898. doi: 10.1073/pnas.0701498104URLpmid: 17898180 |
[55] | N??t?nen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24(4), 375-425. doi: 10.1111/j.1469-8986.1987.tb00311.xURLpmid: 3615753 |
[56] | Ping, J., Li, N., Galbraith, G. C., Wu, X., & Li, L. (2008). Auditory frequency-following responses in rat ipsilateral inferior colliculus. Neuroreport, 19(14), 1377-1380. URLpmid: 18766015 |
[57] | Poje, A. B., & Filion, D. L. (2017). Erratum to: The effects of multiphasic prepulses on automatic and attention- modulated prepulse inhibition. Cognitive Processing, 18, 271. doi: 10.1007/s10339-017-0823-8URLpmid: 28616664 |
[58] | Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 2(12), 1131-1136. doi: 10.1038/16056URL |
[59] | R?skam, S., & Koch, M. (2006). Enhanced prepulse inhibition of startle using salient prepulses in rats. International Journal of Psychophysiology, 60(1), 10-14. doi: 10.1016/j.ijpsycho.2005.04.004URL |
[60] | Rajji, T. K., & Mulsant, B. H. (2008). Nature and course of cognitive function in late-life schizophrenia: A systematic review. Schizophrenia Research, 102(1-3), 122-140. URLpmid: 18468868 |
[61] | Russo, N., Nicol, T., Musacchia, G., & Kraus, N. (2004). Brainstem responses to speech syllables. Clinical Neurophysiology, 115(9), 2021-2033. doi: 10.1016/j.clinph.2004.04.003URLpmid: 15294204 |
[62] | Skoe, E., & Kraus, N. (2012). A little goes a long way: How the adult brain is shaped by musical training in childhood. Journal of Neuroscience, 32(34), 11507-11510. URLpmid: 22915097 |
[63] | Smith, C. W., & Cornblatt, B. (2005). Attention deficits in the development of schizophrenia: Recent evidence from genetic high-risk and prodromal studies. Current Psychosis & Therapeutics Reports, 3(4), 152-156. |
[64] | Smith, Z. M., Delgutte, B., & Oxenham, A. J. (2002). Chimaeric sounds reveal dichotomies in auditory perception. Nature, 416(6876), 87-90. doi: 10.1038/416087aURLpmid: 11882898 |
[65] | Song, J., Skoe, E., Wong, P., & Kraus, N. (2008). Plasticity in the adult human auditory brainstem following short-term linguistic training. Journal of Cognitive Neuroscience, 20(10), 1892-1902. URLpmid: 18370594 |
[66] | Song, J. H., Skoe, E., Banai, K., & Kraus, N. (2012). Training to improve hearing speech in noise: Biological mechanisms. Cerebral Cortex, 22(5), 1180-1190. |
[67] | Song, K., Meng, M., Chen, L., Zhou, K., & Luo, H. (2014). Behavioral oscillations in attention: Rhythmic α pulses mediated through θ band. Journal of Neuroscience, 34(14), 4837-4840. |
[68] | Swerdlow, N. R., Karban, B., Ploum, Y., Sharp, R., Geyer, M. A., & Eastvold, A. (2001). Tactile prepuff inhibition of startle in children with Tourette’s syndrome: In search of an “fMRI-friendly” startle paradigm. Biological Psychiatry, 50(8), 578-585. |
[69] | Swerdlow, N. R., Weber, M., Qu, Y., Light, G. A., & Braff, D. L. (2008). Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology, 199(3), 331-388. doi: 10.1007/s00213-008-1072-4URLpmid: 18568339 |
[70] | Wang, Q., & Li, L. (2017). Differences between auditory frequency-following responses and onset responses: Intracranial evidence from rat inferior colliculus. Hearing Research, 357, 25-32. URLpmid: 29156225 |
[71] | Wang, Y., & Luo, H. (2017). Behavioral oscillation in face priming: Prediction about face identity is updated at a theta-band rhythm. Progress in Brain Research, 36(1), 84-90. |
[72] | Wilson, J. R., & Krishnan, A. (2005). Human frequency- following responses to binaural masking level. Journal of the American Academy of Audiology, 16(3), 184-192. URLpmid: 15844743 |
[73] | Woods, D. L., Knight, R. T., & Scabini, D. (1993). Anatomical substrates of auditory selective attention: Behavioral and electrophysiological effects of posterior association cortex lesions. Brain Research Cognitive Brain Research, 1(4), 227-232. |
[74] | Wu, C., Zheng, Y., Li, J., Wu, H., She, S., Liu, S., ... Li, L. (2016). Brain substrates underlying auditory speech priming in healthy listeners and listeners with schizophrenia. Psychological Medicine, 1-11. doi: 10.1017/S0033291720002366URLpmid: 32684185 |
[75] | Wu, M., Li, H., Gao, Y., Lei, M., Teng, X., Wu, X., & Li, L. (2012). Adding irrelevant information to the content prime reduces the prime-induced unmasking effect on speech recognition. Hearing Research, 283(1), 136-143. |
[76] | Wu, X., Wang, C., Chen, J., Qu, H., Li, W., Wu, Y., ... Li, L. (2005). The effect of perceived spatial separation on informational masking of Chinese speech. Hearing Research, 199(1-2), 1-10. URLpmid: 15574295 |
[77] | Wu, Z. M., Ding, Y., Jia, H. X., & Li, L. (2016). Different effects of isolation-rearing and neonatal MK-801 treatment on attentional modulations of prepulse inhibition of startle in rats. Psychopharmacology, 233(17), 1-14. |
[78] | Yang, N. B., Tian, Q., Fan, Y., Bo, Q. J., Zhang, L., Li, L., & Wang, C. Y. (2017). Deficits of perceived spatial separation induced prepulse inhibition in patients with schizophrenia: Relationships to symptoms and neurocognition. BMC Psychiatry, 17(1), 135-142. doi: 10.1186/s12888-017-1276-4URLpmid: 28399842 |
[79] | Yeomans, J. S., Li, L., Scott, B. W., & Frankland, P. W. (2002). Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neuroscience and Biobehavioral Reviews, 26(1), 1-11. URLpmid: 11835980 |
[80] | Zhang, C., Lu, L., Wu, X., & Li, L. (2014). Attentional modulation of the early cortical representation of speech signals in informational or energetic masking. Brain and Language, 135, 85-95. |
[81] | Zheng, Y., Wu, C., Li, J., Wu, H., She, S., Liu, S., ... Li, L. (2016). Brain substrates of perceived spatial separation between speech sources under simulated reverberant listening conditions in schizophrenia. Psychological Medicine, 46(3), 477-483. doi: 10.1017/S0033291715001828URLpmid: 26423774 |
[82] | Zündorf, I. C., Lewald, J., & Karnath, H.-O. (2016). Testing the dual-pathway model for auditory processing in human cortex. NeuroImage, 124, 672-681. URLpmid: 26388552 |
相关文章 15
[1] | 何嘉梅, 金磊. 目标概念的辨析及其对决策的影响[J]. 心理科学进展, 2021, 29(8): 1410-1419. |
[2] | 荆伟, 张婕, 付锦霞, 田琳, 赵微. 婴幼儿面孔注意偏向:先天倾向与发展轨迹——来自正常和孤独症婴幼儿的证据[J]. 心理科学进展, 2021, 29(7): 1216-1230. |
[3] | 任筱宇, 赵婧, 毕鸿燕. 动作视频游戏对发展性阅读障碍者阅读技能的影响及其内在机制[J]. 心理科学进展, 2021, 29(6): 1000-1009. |
[4] | 欧华星, 陈伟海. 多巴胺D2受体参与调节感觉门控的机制[J]. 心理科学进展, 2021, 29(6): 1030-1041. |
[5] | 孙国晓, 张力为. 竞赛压力、注意控制与运动表现关系的理论演进[J]. 心理科学进展, 2021, 29(6): 1122-1130. |
[6] | 白玉, 杨海波. 创伤后应激障碍个体对威胁刺激的注意偏向:眼动研究的证据[J]. 心理科学进展, 2021, 29(4): 737-746. |
[7] | 章小丹, 张沥今, 丁玉珑, 曲折. 注意过程中的行为振荡现象[J]. 心理科学进展, 2021, 29(3): 460-471. |
[8] | 霍鹏辉, 冯成志, 陈庭继. 注视者及观察者因素对注视知觉的影响[J]. 心理科学进展, 2021, 29(2): 238-251. |
[9] | 张帆, 陈艾睿, 董波, 王爱君, 张明. 视觉注意捕获的快速脱离假说与信号抑制假说[J]. 心理科学进展, 2021, 29(1): 45-55. |
[10] | 刘启鹏, 赵小云, 王翠艳, 徐艺雅, 王淑燕. 反刍思维与注意脱离损坏的关系及其神经机制[J]. 心理科学进展, 2021, 29(1): 102-111. |
[11] | 范晓壮, 毕小彬, 谢宇, 贺荟中. 高功能自闭症个体对威胁性情绪面孔的注意偏向[J]. 心理科学进展, 2020, 28(7): 1172-1186. |
[12] | 黄子立, 丁玉珑, 曲折. 特征注意的全局性调制作用——增强还是抑制?[J]. 心理科学进展, 2020, 28(4): 566-578. |
[13] | 尤媛, 王莉. 儿童行为抑制性与心理障碍关联的认知神经过程[J]. 心理科学进展, 2020, 28(4): 612-625. |
[14] | 贺淇, 王海英. 冥想对注意能力的影响[J]. 心理科学进展, 2020, 28(2): 284-293. |
[15] | 冉光明, 李睿, 张琪. 高社交焦虑者识别动态情绪面孔的神经机制[J]. 心理科学进展, 2020, 28(12): 1979-1988. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5126