1南京师范大学心理学院
2南京师范大学音乐学院, 南京 210097
收稿日期:
2019-09-03出版日期:
2020-06-15发布日期:
2020-04-22通讯作者:
陈庆荣E-mail:jscqr80@sina.com基金资助:
* 国家自然科学基金青年项目(31800914);江苏省社会科学基金项目研究成果(19YYC003);国家社会科学基金重点项目(18AYY010);江苏省高校自然科学研究面上项目(18KJD190003)The cognitive mechanism of music syntactic processing and the influence of music structure on its processing
ZHANG Jingjing1, LIANG Xiaoyue2, CHEN Yidi2, CHEN Qingrong1()1 School of Psychology, Nanjing Normal University, Nanjing 210097, China
2 Conservatory of Music, Nanjing Normal University, Nanjing 210097, China
Received:
2019-09-03Online:
2020-06-15Published:
2020-04-22Contact:
CHEN Qingrong E-mail:jscqr80@sina.com摘要/Abstract
摘要: 音乐和语言是人类最重要的两种交流系统。与语言一样, 音符的排列和组织也是建立在一定的句法规则之上。尽管现有研究发现听众具有感知音乐句法的能力, 音乐句法加工的认知机制以及影响因素仍不清楚。基于此, 拟深入探究预期和整合在音乐音高句法加工中的作用, 以及音乐层级结构和时间结构对音高句法加工的影响。以期进一步揭示音乐句法加工的本质, 为音乐和语言的比较以及探索人类更一般的交流机制提供实证依据。
图/表 1
图1理论研究框架
图1理论研究框架
参考文献 77
[1] | 江俊, 王梓梦, 万璇, 蒋存梅 . (2014). 音乐时间加工的影响因素. 心理科学进展, 22(4), 650-658. doi: 10.3724/SP.J.1042.2014.00650URL |
[2] | 马谐, 杨玉芳, 张秋月 . (2016). 音乐句法的加工. 科学通报, 61(10), 1099-1111. |
[3] | 叶铮, 周晓林 . (2006). 音乐之脑. 心理科学进展, 14(5), 641-647. |
[4] | 张晶晶, 杨玉芳 . (2017). 音乐句法加工的影响因素. 心理科学进展, 25(11), 1823-1830. |
[5] | 周临舒, 蒋存梅, 杨玉芳 . (2012). 音乐和语言句法认知的比较. 科学通报, 57(28), 2674-2685. |
[6] | Arai, M., & Keller, F . (2013). The use of verb-specific information for prediction in sentence processing. Language and Cognitive Processes, 28(4), 525-560. doi: 10.1080/01690965.2012.658072URL |
[7] | Bengtsson, S. L., & Ullén, F . (2006). Dissociation between melodic and rhythmic processing during piano performance from musical scores. NeuroImage, 30(1), 272-284. doi: 10.1016/j.neuroimage.2005.09.019URL |
[8] | Bharucha, J. J., & Stoeckig, K . (1987). Priming of chords: Spreading activation or overlapping frequency spectra? Perception & Psychophysics, 41(6), 519-524. |
[9] | Bigand, E., & Pineau, M . (1997). Global context effects on musical expectancy. Perception & Psychophysics, 59(7), 1098-1107. |
[10] | Bigand, E., Tillmann, B., Poulin, B., D'Adamo, D. A., & Madurell, F . (2001). The effect of harmonic context on phoneme monitoring in vocal music. Cognition, 81(1), B11-B20. |
[11] | Brown, R. M., Chen, J. L., Hollinger, A., Penhune, V. B., Palmer, C., & Zatorre, R. J . (2013). Repetition suppression in auditory-motor regions to pitch and temporal structure in music. Journal of Cognitive Neuroscience, 25(2), 313-328. |
[12] | Carey, D., Rosen, S., Krishnan, S., Pearce, M. T., Shepherd, A., Aydelott, J., & Dick, F . (2015). Generality and specificity in the effects of musical expertise on perception and cognition. Cognition, 137, 81-105. |
[13] | Chen, Q., Zhang, J., Xu, X., Scheepers, C., Yang, Y., & Tanenhaus, M. K . (2016). Prosodic expectations in silent reading: ERP evidence from rhyme scheme and semantic congruence in classic Chinese poems. Cognition, 154, 11-21. doi: 10.1016/j.cognition.2016.05.007URL |
[14] | Christiansen, M. H., & Chater, N . (2016). The now-or-never bottleneck: A fundamental constraint on language. Behavioral and Brain Sciences, 39, 1-72. |
[15] | DeLong, K. A., Urbach, T. P., & Kutas, M . (2005). Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neuroscience, 8(8), 1117-1121. doi: 10.1038/nn1504URL |
[16] | Du, Y., & Zatorre, R. J . (2017). Musical training sharpens and bonds ears and tongue to hear speech better. Proceedings of the National Academy of Sciences, 114(51), 13579-13584. doi: 10.1073/pnas.1712223114URL |
[17] | Eitan, Z., & Granot, R. Y . (2008). Growing oranges on Mozart's apple tree: "Inner form" and aesthetic judgment. Music Perception, 25(5), 397-418. doi: 10.1525/mp.2008.25.issue-5URL |
[18] | Farbood, M. M., Heeger, D. J., Marcus, G., Hasson, U., & Lerner, Y . (2015). The neural processing of hierarchical structure in music and speech at different timescales. Frontiers in Neuroscience, 9, 157. |
[19] | Fitch, W. T . (2013). Rhythmic cognition in humans and animals: Distinguishing meter and pulse perception. Frontiers in systems neuroscience, 7, 68. |
[20] | Friston, K., & Buzsáki, G . (2016). The functional anatomy of time: What and when in the brain. Trends in Cognitive Sciences, 20(7), 500-511. |
[21] | Geiser, E., Ziegler, E., Jancke, L., & Meyer, M . (2009). Early electrophysiological correlates of meter and rhythm processing in music perception. Cortex, 45(1), 93-102. doi: 10.1016/j.cortex.2007.09.010URL |
[22] | Granot, R. Y., & Jacoby, N . (2011). Musically puzzling I: Sensitivity to overall structure in the sonata form? Musicae Scientiae, 15(3), 365-386. doi: 10.1177/1029864911409508URL |
[23] | Hasson, U., Chen, J., & Honey, C. J . (2015). Hierarchical process memory: Memory as an integral component of information processing. Trends in Cognitive Sciences, 19(6), 304-313. |
[24] | Huron, D. B . (2006). Sweet anticipation: Music and the psychology of expectation. Cambridge, MA: MIT press. |
[25] | Ito, A., Corley, M., Pickering, M. J., Martin, A. E., & Nieuwland, M. S . (2016). Predicting form and meaning: Evidence from brain potentials. Journal of Memory and Language, 86, 157-171. doi: 10.1016/j.jml.2015.10.007URL |
[26] | Ito, A., Pickering, M. J., & Corley, M . (2018). Investigating the time-course of phonological prediction in native and non-native speakers of English: A visual world eye-t racking study. Journal of Memory and Language, 98, 1-11. doi: 10.1016/j.jml.2017.09.002URL |
[27] | Jentschke, S., Friederici, A. D., & Koelsch, S . (2014). Neural correlates of music-syntactic processing in two-year old children. Developmental Cognitive Neuroscience, 9, 200-208. doi: 10.1016/j.dcn.2014.04.005URL |
[28] | Jones, M. R., & Boltz, M . (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459-491. |
[29] | Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J . (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13(4), 313-319. |
[30] | Kamide, Y . (2012). Learning individual talkers’ structural preferences. Cognition, 124(1), 66-71. |
[31] | Kintsch, W . (1988). The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review, 95(2), 163-182. doi: 10.1037/0033-295X.95.2.163URL |
[32] | Koelsch, S . (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170-180. doi: 10.1038/nrn3666URL |
[33] | Koelsch, S., Gunter, T., Friederici, A. D., & Schröger, E . (2000). Brain indices of music processing: “nonmusicians” are musical. Journal of Cognitive Neuroscience, 12(3), 520-541. doi: 10.1162/089892900562183URL |
[34] | Koelsch, S., Jentschke, S., Sammler, D., & Mietchen, D . (2007). Untangling syntactic and sensory processing: An ERP study of music perception. Psychophysiology, 44(3), 476-490. doi: 10.1111/psyp.2007.44.issue-3URL |
[35] | Koelsch, S., Rohrmeier, M., Torrecuso, R., & Jentschke, S . (2013). Processing of hierarchical syntactic structure in music. Proceedings of the National Academy of Sciences, 110(38), 15443-15448. doi: 10.1073/pnas.1300272110URL |
[36] | Koelsch, S., Schmidt, B.-H., & Kansok, J . (2002). Effects of musical expertise on the early right anterior negativity: An event-related brain potential study. Psychophysiology, 39(5), 657-663. doi: 10.1111/psyp.2002.39.issue-5URL |
[37] | Koelsch, S., Vuust, P., & Friston, K . (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63-77. doi: 10.1016/j.tics.2018.10.006URL |
[38] | Kuperberg, G. R., & Jaeger, T. F . (2016). What do we mean by prediction in language comprehension? Language, Cognition and Neuroscience, 31(1), 32-59. doi: 10.1080/23273798.2015.1102299URL |
[39] | Lagrois, M.-é., Peretz, I., & Zendel, B. R . (2018). Neurophysiological and behavioral differences between older and younger adults when processing violations of tonal structure in music. Frontiers in Neuroscience, 12, 54. doi: 10.3389/fnins.2018.00054URL |
[40] | Lau, E., Stroud, C., Plesch, S., & Phillips, C . (2006). The role of structural prediction in rapid syntactic analysis. Brain and language, 98(1), 74-88. doi: 10.1016/j.bandl.2006.02.003URL |
[41] | Lebrun-Guillaud, G., Tillmann, B., & Justus, T . (2008). Perception of tonal and temporal structures in chord sequences by patients with cerebellar damage. Music Perception, 25(4), 271-283. doi: 10.1525/mp.2008.25.4.271URL |
[42] | Lerdahl, F., & Jackendoff, R. S . (1983). A generative theory of tonal music. Cambridge, MA: MIT press. |
[43] | Lerner, Y., Honey, C. J., Silbert, L. J., & Hasson, U . (2011). Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. Journal of Neuroscience, 31(8), 2906-2915. doi: 10.1523/JNEUROSCI.3684-10.2011URL |
[44] | Li, X., Zhang, Y., Xia, J., & Swaab, T. Y . (2017). Internal mechanisms underlying anticipatory language processing: Evidence from event-related-potentials and neural oscillations. Neuropsychologia, 102, 70-81. doi: 10.1016/j.neuropsychologia.2017.05.017URL |
[45] | Ma, X., Ding, N., Tao, Y., & Yang, Y. F . (2018a). Differences in neurocognitive mechanisms underlying the processing of center-embedded and non-embedded musical structures. Frontiers in Human Neuroscience, 12, 425. doi: 10.3389/fnhum.2018.00425URL |
[46] | Ma, X., Ding, N., Tao, Y., & Yang, Y. F . (2018b). Syntactic complexity and musical proficiency modulate neural processing of non-native music. Neuropsychologia, 121, 164-174. doi: 10.1016/j.neuropsychologia.2018.10.005URL |
[47] | Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D . (2001). Musical syntax is processed in Broca's area: An MEG study. Nature Neuroscience, 4(5), 540-545. doi: 10.1038/87502URL |
[48] | Maess, B., Mamashli, F., Obleser, J., Helle, L., & Friederici, A. D . (2016). Prediction signatures in the brain: Semantic pre-activation during language comprehension. Frontiers in Human Neuroscience, 10, 591. |
[49] | Margulis, E. H . (2005). A model of melodic expectation. Music Perception, 22(4), 663-714. doi: 10.1525/mp.2005.22.4.663URL |
[50] | Meyer, L. B. (2008). Emotion and meaning in music. Chicago, IL: University of chicago Press. |
[51] | Müller, M., Höfel, L., Brattico, E., & Jacobsen, T . (2010). Aesthetic judgments of music in experts and laypersons— An ERP study. International Journal of Psychophysiology, 76(1), 40-51. doi: 10.1016/j.ijpsycho.2010.02.002URL |
[52] | Nan, Y., Liu, L., Geiser, E., Shu, H., Gong, C. C., Dong, Q., ... & Desimone, R . (2018). Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. Proceedings of the National Academy of Sciences, 115(28), E6630-E6639. doi: 10.1073/pnas.1808412115URL |
[53] | Otten, M., Nieuwland, M. S., & van Berkum, J. J . (2007). Great expectations: Specific lexical anticipation influences the processing of spoken language. BMC neuroscience, 8(1), 89. doi: 10.1186/1471-2202-8-89URL |
[54] | Otten, M., & van Berkum, J. J . (2008). Discourse-based word anticipation during language processing: Prediction or priming? Discourse Processes, 45(6), 464-496. doi: 10.1080/01638530802356463URL |
[55] | Palmer, C., & Krumhansl, C. L . (1987). Independent temporal and pitch structures in determination of musical phrases. Journal of Experimental Psychology: Human Perception and Performance, 13(1), 116-126. doi: 10.1037/0096-1523.13.1.116URL |
[56] | Patel, A. D . (2010). Music, language, and the brain. Oxford: Oxford university press. |
[57] | Patel, A. D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P. J . (1998). Processing syntactic relations in language and music: An event-related potential study. Journal of Cognitive Neuroscience, 10(6), 717-733. |
[58] | Peretz, I . (1990). Processing of local and global musical information by unilateral brain-damaged patients. Brain, 113(4), 1185-1205. |
[59] | Peretz, I . (1996). Can we lose memory for music? A case of music agnosia in a nonmusician. Journal of Cognitive Neuroscience, 8(6), 481-496. |
[60] | Peretz, I., & Coltheart, M . (2003). Modularity of music processing. Nature Neuroscience, 6(7), 688-691. doi: 10.1038/nn1083URL |
[61] | Peretz, I., & Kolinsky, R . (1993). Boundaries of separability between melody and rhythm in music discrimination: A neuropsychological perspective. The Quarterly Journal of Experimental Psychology, 46(2), 301-325. |
[62] | Poulin-Charronnat, B., Bigand, E., & Koelsch, S . (2006). Processing of musical syntax tonic versus subdominant: An event-related potential study. Journal of Cognitive Neuroscience, 18(9), 1545-1554. doi: 10.1162/jocn.2006.18.9.1545URL |
[63] | Ruiz, M. H., Koelsch, S., & Bhattacharya, J . (2009). Decrease in early right alpha band phase synchronization and late gamma band oscillations in processing syntax in music. Human Brain Mapping, 30(4), 1207-1225. |
[64] | Schmuckler, M. A., & Boltz, M. G . (1994). Harmonic and rhythmic influences on musical expectancy. Perception & Psychophysics, 56(3), 313-325. |
[65] | Sun, L., Liu, F., Zhou, L., & Jiang, C . (2018). Musical training modulates the early but not the late stage of rhythmic syntactic processing. Psychophysiology, 55(2), e12983. doi: 10.1111/psyp.2018.55.issue-2URL |
[66] | Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C . (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268(5217), 1632-1634. doi: 10.1126/science.7777863URL |
[67] | Tillmann, B., & Bigand, E . (1998). Influence of global structure on musical target detection and recognition. International Journal of Psychology, 33(2), 107-122. |
[68] | Tillmann, B., Bigand, E., & Pineau, M . (1998). Effects of global and local contexts on harmonic expectancy. Music Perception, 16(1), 99-117. doi: 10.2307/40285780URL |
[69] | Tillmann, B., Janata, P., & Bharucha, J. J . (2003). Activation of the inferior frontal cortex in musical priming. Cognitive Brain Research, 16(2), 145-161. doi: 10.1016/S0926-6410(02)00245-8URL |
[70] | Tillmann, B., & Lebrun-Guillaud, G . (2006). Influence of tonal and temporal expectations on chord processing and on completion judgments of chord sequences. Psychological Research, 70(5), 345-358. doi: 10.1007/s00426-005-0222-0URL |
[71] | Treisman, A. M., & Gelade, G . (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136. |
[72] | van Berkum,, J. J. A., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort, P . (2005). Anticipating upcoming words in discourse: Evidence from ERPs and reading times. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(3), 443-467. |
[73] | van Petten, C., & Luka, B. J . (2012). Prediction during language comprehension: Benefits, costs, and ERP components. International Journal of Psychophysiology, 83(2), 176-190. doi: 10.1016/j.ijpsycho.2011.09.015URL |
[74] | Zhang, J., Che, X., & Yang, Y . (2019). Event-related brain potentials suggest a late interaction of pitch and time in music perception. Neuropsychologia, 132, 107118. doi: 10.1016/j.neuropsychologia.2019.107118URL |
[75] | Zhang, J., Jiang, C., Zhou, L., & Yang, Y . (2016). Perception of hierarchical boundaries in music and its modulation by expertise. Neuropsychologia, 91, 490-498. doi: 10.1016/j.neuropsychologia.2016.09.013URL |
[76] | Zhang, J., Zhou, X., Chang, R., & Yang, Y . (2018). Effects of global and local contexts on chord processing: An ERP study. Neuropsychologia, 109, 149-154. |
[77] | Zhou, L., Liu, F., Jiang, J., Jiang, H., & Jiang, C . (2019). Abnormal neural responses to harmonic syntactic structures in congenital amusia. Psychophysiology, e13394. |
相关文章 15
[1] | 王琳, 王志丹, 王泓婧. 孤独症儿童动作发展障碍的神经机制[J]. 心理科学进展, 2021, 29(7): 1239-1250. |
[2] | 隋雪, 史汉文, 李雨桐. 语言加工过程中的观点采择及其认知机制[J]. 心理科学进展, 2021, 29(6): 990-999. |
[3] | 张照, 张力为, 龚然. 视觉工作记忆的过滤效能[J]. 心理科学进展, 2021, 29(4): 635-651. |
[4] | 周爱保, 胡砚冰, 周滢鑫, 李玉, 李文一, 张号博, 郭彦麟, 胡国庆. 听而不“闻”?人声失认症的神经机制[J]. 心理科学进展, 2021, 29(3): 414-424. |
[5] | 赵小红, 童薇, 陈桃林, 吴冬梅, 张蕾, 陈正举, 方晓义, 龚启勇, 唐小蓉. 敬畏的心理模型及其认知神经机制[J]. 心理科学进展, 2021, 29(3): 520-530. |
[6] | 魏真瑜, 邓湘树, 赵治瀛. 亲社会行为中的从众效应[J]. 心理科学进展, 2021, 29(3): 531-539. |
[7] | 岳童, 黄希庭, 傅安国. 人们何以能够“舍生取义”?基于保护性价值观认知神经机制的解释[J]. 心理科学进展, 2021, 29(3): 540-548. |
[8] | 王葛彤, 席洁, 陈霓虹, 黄昌兵. 双眼视差的神经机制与知觉学习效应[J]. 心理科学进展, 2021, 29(1): 56-69. |
[9] | 郭滢, 龚先旻, 王大华. 错误记忆产生的认知与神经机制:信息加工视角[J]. 心理科学进展, 2021, 29(1): 79-92. |
[10] | 刘启鹏, 赵小云, 王翠艳, 徐艺雅, 王淑燕. 反刍思维与注意脱离损坏的关系及其神经机制[J]. 心理科学进展, 2021, 29(1): 102-111. |
[11] | 翁纯纯, 王宁. 时距知觉的动物研究范式及相关神经机制[J]. 心理科学进展, 2020, 28(9): 1478-1492. |
[12] | 杨晓梦, 王福兴, 王燕青, 赵婷婷, 高春颍, 胡祥恩. 瞳孔是心灵的窗口吗?——瞳孔在心理学研究中的应用及测量[J]. 心理科学进展, 2020, 28(7): 1029-1041. |
[13] | 程士静, 何文广. 语义认知的习得、发展和老化及其神经机制[J]. 心理科学进展, 2020, 28(7): 1156-1163. |
[14] | 杨国春, 伍海燕, 齐玥, 刘勋. 人类性别加工的认知神经机制[J]. 心理科学进展, 2020, 28(12): 2008-2017. |
[15] | 李灵, 侯晓旭, 张亚, 隋雪. 食物线索注意偏向及其神经机制[J]. 心理科学进展, 2020, 28(12): 2040-2051. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5050