删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

音乐句法加工的认知机制与音乐结构的影响模式

本站小编 Free考研考试/2022-01-01

张晶晶1, 梁啸岳2, 陈伊笛2, 陈庆荣1()
1南京师范大学心理学院
2南京师范大学音乐学院, 南京 210097
收稿日期:2019-09-03出版日期:2020-06-15发布日期:2020-04-22
通讯作者:陈庆荣E-mail:jscqr80@sina.com

基金资助:* 国家自然科学基金青年项目(31800914);江苏省社会科学基金项目研究成果(19YYC003);国家社会科学基金重点项目(18AYY010);江苏省高校自然科学研究面上项目(18KJD190003)

The cognitive mechanism of music syntactic processing and the influence of music structure on its processing

ZHANG Jingjing1, LIANG Xiaoyue2, CHEN Yidi2, CHEN Qingrong1()
1 School of Psychology, Nanjing Normal University, Nanjing 210097, China
2 Conservatory of Music, Nanjing Normal University, Nanjing 210097, China
Received:2019-09-03Online:2020-06-15Published:2020-04-22
Contact:CHEN Qingrong E-mail:jscqr80@sina.com






摘要/Abstract


摘要: 音乐和语言是人类最重要的两种交流系统。与语言一样, 音符的排列和组织也是建立在一定的句法规则之上。尽管现有研究发现听众具有感知音乐句法的能力, 音乐句法加工的认知机制以及影响因素仍不清楚。基于此, 拟深入探究预期和整合在音乐音高句法加工中的作用, 以及音乐层级结构和时间结构对音高句法加工的影响。以期进一步揭示音乐句法加工的本质, 为音乐和语言的比较以及探索人类更一般的交流机制提供实证依据。



图1理论研究框架
图1理论研究框架







[1] 江俊, 王梓梦, 万璇, 蒋存梅 . (2014). 音乐时间加工的影响因素. 心理科学进展, 22(4), 650-658.
doi: 10.3724/SP.J.1042.2014.00650URL
[2] 马谐, 杨玉芳, 张秋月 . (2016). 音乐句法的加工. 科学通报, 61(10), 1099-1111.
[3] 叶铮, 周晓林 . (2006). 音乐之脑. 心理科学进展, 14(5), 641-647.
[4] 张晶晶, 杨玉芳 . (2017). 音乐句法加工的影响因素. 心理科学进展, 25(11), 1823-1830.
[5] 周临舒, 蒋存梅, 杨玉芳 . (2012). 音乐和语言句法认知的比较. 科学通报, 57(28), 2674-2685.
[6] Arai, M., & Keller, F . (2013). The use of verb-specific information for prediction in sentence processing. Language and Cognitive Processes, 28(4), 525-560.
doi: 10.1080/01690965.2012.658072URL
[7] Bengtsson, S. L., & Ullén, F . (2006). Dissociation between melodic and rhythmic processing during piano performance from musical scores. NeuroImage, 30(1), 272-284.
doi: 10.1016/j.neuroimage.2005.09.019URL
[8] Bharucha, J. J., & Stoeckig, K . (1987). Priming of chords: Spreading activation or overlapping frequency spectra? Perception & Psychophysics, 41(6), 519-524.
[9] Bigand, E., & Pineau, M . (1997). Global context effects on musical expectancy. Perception & Psychophysics, 59(7), 1098-1107.
[10] Bigand, E., Tillmann, B., Poulin, B., D'Adamo, D. A., & Madurell, F . (2001). The effect of harmonic context on phoneme monitoring in vocal music. Cognition, 81(1), B11-B20.
[11] Brown, R. M., Chen, J. L., Hollinger, A., Penhune, V. B., Palmer, C., & Zatorre, R. J . (2013). Repetition suppression in auditory-motor regions to pitch and temporal structure in music. Journal of Cognitive Neuroscience, 25(2), 313-328.
[12] Carey, D., Rosen, S., Krishnan, S., Pearce, M. T., Shepherd, A., Aydelott, J., & Dick, F . (2015). Generality and specificity in the effects of musical expertise on perception and cognition. Cognition, 137, 81-105.
[13] Chen, Q., Zhang, J., Xu, X., Scheepers, C., Yang, Y., & Tanenhaus, M. K . (2016). Prosodic expectations in silent reading: ERP evidence from rhyme scheme and semantic congruence in classic Chinese poems. Cognition, 154, 11-21.
doi: 10.1016/j.cognition.2016.05.007URL
[14] Christiansen, M. H., & Chater, N . (2016). The now-or-never bottleneck: A fundamental constraint on language. Behavioral and Brain Sciences, 39, 1-72.
[15] DeLong, K. A., Urbach, T. P., & Kutas, M . (2005). Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neuroscience, 8(8), 1117-1121.
doi: 10.1038/nn1504URL
[16] Du, Y., & Zatorre, R. J . (2017). Musical training sharpens and bonds ears and tongue to hear speech better. Proceedings of the National Academy of Sciences, 114(51), 13579-13584.
doi: 10.1073/pnas.1712223114URL
[17] Eitan, Z., & Granot, R. Y . (2008). Growing oranges on Mozart's apple tree: "Inner form" and aesthetic judgment. Music Perception, 25(5), 397-418.
doi: 10.1525/mp.2008.25.issue-5URL
[18] Farbood, M. M., Heeger, D. J., Marcus, G., Hasson, U., & Lerner, Y . (2015). The neural processing of hierarchical structure in music and speech at different timescales. Frontiers in Neuroscience, 9, 157.
[19] Fitch, W. T . (2013). Rhythmic cognition in humans and animals: Distinguishing meter and pulse perception. Frontiers in systems neuroscience, 7, 68.
[20] Friston, K., & Buzsáki, G . (2016). The functional anatomy of time: What and when in the brain. Trends in Cognitive Sciences, 20(7), 500-511.
[21] Geiser, E., Ziegler, E., Jancke, L., & Meyer, M . (2009). Early electrophysiological correlates of meter and rhythm processing in music perception. Cortex, 45(1), 93-102.
doi: 10.1016/j.cortex.2007.09.010URL
[22] Granot, R. Y., & Jacoby, N . (2011). Musically puzzling I: Sensitivity to overall structure in the sonata form? Musicae Scientiae, 15(3), 365-386.
doi: 10.1177/1029864911409508URL
[23] Hasson, U., Chen, J., & Honey, C. J . (2015). Hierarchical process memory: Memory as an integral component of information processing. Trends in Cognitive Sciences, 19(6), 304-313.
[24] Huron, D. B . (2006). Sweet anticipation: Music and the psychology of expectation. Cambridge, MA: MIT press.
[25] Ito, A., Corley, M., Pickering, M. J., Martin, A. E., & Nieuwland, M. S . (2016). Predicting form and meaning: Evidence from brain potentials. Journal of Memory and Language, 86, 157-171.
doi: 10.1016/j.jml.2015.10.007URL
[26] Ito, A., Pickering, M. J., & Corley, M . (2018). Investigating the time-course of phonological prediction in native and non-native speakers of English: A visual world eye-t racking study. Journal of Memory and Language, 98, 1-11.
doi: 10.1016/j.jml.2017.09.002URL
[27] Jentschke, S., Friederici, A. D., & Koelsch, S . (2014). Neural correlates of music-syntactic processing in two-year old children. Developmental Cognitive Neuroscience, 9, 200-208.
doi: 10.1016/j.dcn.2014.04.005URL
[28] Jones, M. R., & Boltz, M . (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459-491.
[29] Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J . (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13(4), 313-319.
[30] Kamide, Y . (2012). Learning individual talkers’ structural preferences. Cognition, 124(1), 66-71.
[31] Kintsch, W . (1988). The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review, 95(2), 163-182.
doi: 10.1037/0033-295X.95.2.163URL
[32] Koelsch, S . (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170-180.
doi: 10.1038/nrn3666URL
[33] Koelsch, S., Gunter, T., Friederici, A. D., & Schröger, E . (2000). Brain indices of music processing: “nonmusicians” are musical. Journal of Cognitive Neuroscience, 12(3), 520-541.
doi: 10.1162/089892900562183URL
[34] Koelsch, S., Jentschke, S., Sammler, D., & Mietchen, D . (2007). Untangling syntactic and sensory processing: An ERP study of music perception. Psychophysiology, 44(3), 476-490.
doi: 10.1111/psyp.2007.44.issue-3URL
[35] Koelsch, S., Rohrmeier, M., Torrecuso, R., & Jentschke, S . (2013). Processing of hierarchical syntactic structure in music. Proceedings of the National Academy of Sciences, 110(38), 15443-15448.
doi: 10.1073/pnas.1300272110URL
[36] Koelsch, S., Schmidt, B.-H., & Kansok, J . (2002). Effects of musical expertise on the early right anterior negativity: An event-related brain potential study. Psychophysiology, 39(5), 657-663.
doi: 10.1111/psyp.2002.39.issue-5URL
[37] Koelsch, S., Vuust, P., & Friston, K . (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63-77.
doi: 10.1016/j.tics.2018.10.006URL
[38] Kuperberg, G. R., & Jaeger, T. F . (2016). What do we mean by prediction in language comprehension? Language, Cognition and Neuroscience, 31(1), 32-59.
doi: 10.1080/23273798.2015.1102299URL
[39] Lagrois, M.-é., Peretz, I., & Zendel, B. R . (2018). Neurophysiological and behavioral differences between older and younger adults when processing violations of tonal structure in music. Frontiers in Neuroscience, 12, 54.
doi: 10.3389/fnins.2018.00054URL
[40] Lau, E., Stroud, C., Plesch, S., & Phillips, C . (2006). The role of structural prediction in rapid syntactic analysis. Brain and language, 98(1), 74-88.
doi: 10.1016/j.bandl.2006.02.003URL
[41] Lebrun-Guillaud, G., Tillmann, B., & Justus, T . (2008). Perception of tonal and temporal structures in chord sequences by patients with cerebellar damage. Music Perception, 25(4), 271-283.
doi: 10.1525/mp.2008.25.4.271URL
[42] Lerdahl, F., & Jackendoff, R. S . (1983). A generative theory of tonal music. Cambridge, MA: MIT press.
[43] Lerner, Y., Honey, C. J., Silbert, L. J., & Hasson, U . (2011). Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. Journal of Neuroscience, 31(8), 2906-2915.
doi: 10.1523/JNEUROSCI.3684-10.2011URL
[44] Li, X., Zhang, Y., Xia, J., & Swaab, T. Y . (2017). Internal mechanisms underlying anticipatory language processing: Evidence from event-related-potentials and neural oscillations. Neuropsychologia, 102, 70-81.
doi: 10.1016/j.neuropsychologia.2017.05.017URL
[45] Ma, X., Ding, N., Tao, Y., & Yang, Y. F . (2018a). Differences in neurocognitive mechanisms underlying the processing of center-embedded and non-embedded musical structures. Frontiers in Human Neuroscience, 12, 425.
doi: 10.3389/fnhum.2018.00425URL
[46] Ma, X., Ding, N., Tao, Y., & Yang, Y. F . (2018b). Syntactic complexity and musical proficiency modulate neural processing of non-native music. Neuropsychologia, 121, 164-174.
doi: 10.1016/j.neuropsychologia.2018.10.005URL
[47] Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D . (2001). Musical syntax is processed in Broca's area: An MEG study. Nature Neuroscience, 4(5), 540-545.
doi: 10.1038/87502URL
[48] Maess, B., Mamashli, F., Obleser, J., Helle, L., & Friederici, A. D . (2016). Prediction signatures in the brain: Semantic pre-activation during language comprehension. Frontiers in Human Neuroscience, 10, 591.
[49] Margulis, E. H . (2005). A model of melodic expectation. Music Perception, 22(4), 663-714.
doi: 10.1525/mp.2005.22.4.663URL
[50] Meyer, L. B. (2008). Emotion and meaning in music. Chicago, IL: University of chicago Press.
[51] Müller, M., Höfel, L., Brattico, E., & Jacobsen, T . (2010). Aesthetic judgments of music in experts and laypersons— An ERP study. International Journal of Psychophysiology, 76(1), 40-51.
doi: 10.1016/j.ijpsycho.2010.02.002URL
[52] Nan, Y., Liu, L., Geiser, E., Shu, H., Gong, C. C., Dong, Q., ... & Desimone, R . (2018). Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. Proceedings of the National Academy of Sciences, 115(28), E6630-E6639.
doi: 10.1073/pnas.1808412115URL
[53] Otten, M., Nieuwland, M. S., & van Berkum, J. J . (2007). Great expectations: Specific lexical anticipation influences the processing of spoken language. BMC neuroscience, 8(1), 89.
doi: 10.1186/1471-2202-8-89URL
[54] Otten, M., & van Berkum, J. J . (2008). Discourse-based word anticipation during language processing: Prediction or priming? Discourse Processes, 45(6), 464-496.
doi: 10.1080/01638530802356463URL
[55] Palmer, C., & Krumhansl, C. L . (1987). Independent temporal and pitch structures in determination of musical phrases. Journal of Experimental Psychology: Human Perception and Performance, 13(1), 116-126.
doi: 10.1037/0096-1523.13.1.116URL
[56] Patel, A. D . (2010). Music, language, and the brain. Oxford: Oxford university press.
[57] Patel, A. D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P. J . (1998). Processing syntactic relations in language and music: An event-related potential study. Journal of Cognitive Neuroscience, 10(6), 717-733.
[58] Peretz, I . (1990). Processing of local and global musical information by unilateral brain-damaged patients. Brain, 113(4), 1185-1205.
[59] Peretz, I . (1996). Can we lose memory for music? A case of music agnosia in a nonmusician. Journal of Cognitive Neuroscience, 8(6), 481-496.
[60] Peretz, I., & Coltheart, M . (2003). Modularity of music processing. Nature Neuroscience, 6(7), 688-691.
doi: 10.1038/nn1083URL
[61] Peretz, I., & Kolinsky, R . (1993). Boundaries of separability between melody and rhythm in music discrimination: A neuropsychological perspective. The Quarterly Journal of Experimental Psychology, 46(2), 301-325.
[62] Poulin-Charronnat, B., Bigand, E., & Koelsch, S . (2006). Processing of musical syntax tonic versus subdominant: An event-related potential study. Journal of Cognitive Neuroscience, 18(9), 1545-1554.
doi: 10.1162/jocn.2006.18.9.1545URL
[63] Ruiz, M. H., Koelsch, S., & Bhattacharya, J . (2009). Decrease in early right alpha band phase synchronization and late gamma band oscillations in processing syntax in music. Human Brain Mapping, 30(4), 1207-1225.
[64] Schmuckler, M. A., & Boltz, M. G . (1994). Harmonic and rhythmic influences on musical expectancy. Perception & Psychophysics, 56(3), 313-325.
[65] Sun, L., Liu, F., Zhou, L., & Jiang, C . (2018). Musical training modulates the early but not the late stage of rhythmic syntactic processing. Psychophysiology, 55(2), e12983.
doi: 10.1111/psyp.2018.55.issue-2URL
[66] Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C . (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268(5217), 1632-1634.
doi: 10.1126/science.7777863URL
[67] Tillmann, B., & Bigand, E . (1998). Influence of global structure on musical target detection and recognition. International Journal of Psychology, 33(2), 107-122.
[68] Tillmann, B., Bigand, E., & Pineau, M . (1998). Effects of global and local contexts on harmonic expectancy. Music Perception, 16(1), 99-117.
doi: 10.2307/40285780URL
[69] Tillmann, B., Janata, P., & Bharucha, J. J . (2003). Activation of the inferior frontal cortex in musical priming. Cognitive Brain Research, 16(2), 145-161.
doi: 10.1016/S0926-6410(02)00245-8URL
[70] Tillmann, B., & Lebrun-Guillaud, G . (2006). Influence of tonal and temporal expectations on chord processing and on completion judgments of chord sequences. Psychological Research, 70(5), 345-358.
doi: 10.1007/s00426-005-0222-0URL
[71] Treisman, A. M., & Gelade, G . (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136.
[72] van Berkum,, J. J. A., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort, P . (2005). Anticipating upcoming words in discourse: Evidence from ERPs and reading times. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(3), 443-467.
[73] van Petten, C., & Luka, B. J . (2012). Prediction during language comprehension: Benefits, costs, and ERP components. International Journal of Psychophysiology, 83(2), 176-190.
doi: 10.1016/j.ijpsycho.2011.09.015URL
[74] Zhang, J., Che, X., & Yang, Y . (2019). Event-related brain potentials suggest a late interaction of pitch and time in music perception. Neuropsychologia, 132, 107118.
doi: 10.1016/j.neuropsychologia.2019.107118URL
[75] Zhang, J., Jiang, C., Zhou, L., & Yang, Y . (2016). Perception of hierarchical boundaries in music and its modulation by expertise. Neuropsychologia, 91, 490-498.
doi: 10.1016/j.neuropsychologia.2016.09.013URL
[76] Zhang, J., Zhou, X., Chang, R., & Yang, Y . (2018). Effects of global and local contexts on chord processing: An ERP study. Neuropsychologia, 109, 149-154.
[77] Zhou, L., Liu, F., Jiang, J., Jiang, H., & Jiang, C . (2019). Abnormal neural responses to harmonic syntactic structures in congenital amusia. Psychophysiology, e13394.




[1]王琳, 王志丹, 王泓婧. 孤独症儿童动作发展障碍的神经机制[J]. 心理科学进展, 2021, 29(7): 1239-1250.
[2]隋雪, 史汉文, 李雨桐. 语言加工过程中的观点采择及其认知机制[J]. 心理科学进展, 2021, 29(6): 990-999.
[3]张照, 张力为, 龚然. 视觉工作记忆的过滤效能[J]. 心理科学进展, 2021, 29(4): 635-651.
[4]周爱保, 胡砚冰, 周滢鑫, 李玉, 李文一, 张号博, 郭彦麟, 胡国庆. 听而不“闻”?人声失认症的神经机制[J]. 心理科学进展, 2021, 29(3): 414-424.
[5]赵小红, 童薇, 陈桃林, 吴冬梅, 张蕾, 陈正举, 方晓义, 龚启勇, 唐小蓉. 敬畏的心理模型及其认知神经机制[J]. 心理科学进展, 2021, 29(3): 520-530.
[6]魏真瑜, 邓湘树, 赵治瀛. 亲社会行为中的从众效应[J]. 心理科学进展, 2021, 29(3): 531-539.
[7]岳童, 黄希庭, 傅安国. 人们何以能够“舍生取义”?基于保护性价值观认知神经机制的解释[J]. 心理科学进展, 2021, 29(3): 540-548.
[8]王葛彤, 席洁, 陈霓虹, 黄昌兵. 双眼视差的神经机制与知觉学习效应[J]. 心理科学进展, 2021, 29(1): 56-69.
[9]郭滢, 龚先旻, 王大华. 错误记忆产生的认知与神经机制:信息加工视角[J]. 心理科学进展, 2021, 29(1): 79-92.
[10]刘启鹏, 赵小云, 王翠艳, 徐艺雅, 王淑燕. 反刍思维与注意脱离损坏的关系及其神经机制[J]. 心理科学进展, 2021, 29(1): 102-111.
[11]翁纯纯, 王宁. 时距知觉的动物研究范式及相关神经机制[J]. 心理科学进展, 2020, 28(9): 1478-1492.
[12]杨晓梦, 王福兴, 王燕青, 赵婷婷, 高春颍, 胡祥恩. 瞳孔是心灵的窗口吗?——瞳孔在心理学研究中的应用及测量[J]. 心理科学进展, 2020, 28(7): 1029-1041.
[13]程士静, 何文广. 语义认知的习得、发展和老化及其神经机制[J]. 心理科学进展, 2020, 28(7): 1156-1163.
[14]杨国春, 伍海燕, 齐玥, 刘勋. 人类性别加工的认知神经机制[J]. 心理科学进展, 2020, 28(12): 2008-2017.
[15]李灵, 侯晓旭, 张亚, 隋雪. 食物线索注意偏向及其神经机制[J]. 心理科学进展, 2020, 28(12): 2040-2051.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5050
相关话题/科学 心理 音乐 神经 语言

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 视觉语言对听觉障碍人群阅读能力的影响及作用机制
    赵英,伍新春(),谢瑞波,冯杰,孙鹏,陈红君北京师范大学心理学部,应用实验心理北京市重点实验室,儿童阅读与学习研究中心,北京100875收稿日期:2019-06-10出版日期:2020-06-15发布日期:2020-04-22通讯作者:伍新春E-mail:xcwu@bnu.edu.cn基金资助:*国 ...
    本站小编 Free考研考试 2022-01-01
  • 慈悲冥想对利他行为的影响及其认知神经机制
    金国敏,李丹()上海师范大学心理学系,上海200234收稿日期:2019-09-05出版日期:2020-06-15发布日期:2020-04-22通讯作者:李丹E-mail:lidan501@126.com基金资助:*上海市教委科研创新计划重大项目(2019-01-07-00-02-E00005)Th ...
    本站小编 Free考研考试 2022-01-01
  • 行为贫困陷阱的心理机制与管理对策:基于认知与动机双视角
    徐富明1,黄龙2,3(),张慧4,相鹏5(),刘腾飞6,李亚红71南宁师范大学教育科学学院,南宁5302992皖南医学院人文与管理学院,芜湖3410023江西师范大学心理学院,南昌3300224华中科技大学社会学院,武汉4300745南京财经大学法学院,南京2100236广东医科大学人文与管理学院, ...
    本站小编 Free考研考试 2022-01-01
  • 人声加工的神经机制
    伍可1,2,陈杰1,2(),李雯婕1,2,陈洁佳1,2,刘雷3,刘翠红1,21湖南师范大学教育科学学院2湖南师范大学认知与人类行为湖南省重点实验室,长沙4100813北京大学心理与认知科学学院,北京100080收稿日期:2019-07-11出版日期:2020-04-26发布日期:2020-03-27 ...
    本站小编 Free考研考试 2022-01-01
  • 老年人视听觉整合的影响因素及其神经机制
    杨伟平1,3(),李胜楠1,李子默1,郭敖1,任艳娜2()1湖北大学教育学院心理学系,武汉4300622贵州中医药大学人文与管理学院心理学教研室,贵阳5500253湖北大学教育学院脑与认知研究中心,武汉430062收稿日期:2019-08-13出版日期:2020-04-26发布日期:2020-03- ...
    本站小编 Free考研考试 2022-01-01
  • 语言功能偏侧化及其与利手、功能连接的关系
    王潇,吴国榕(),吴欣然,邱江,陈红西南大学心理学部,认知与人格教育部重点实验室,重庆400715收稿日期:2019-04-12出版日期:2020-04-26发布日期:2020-03-27基金资助:&国家自然科学基金项目(61876156)Languagelateralization ...
    本站小编 Free考研考试 2022-01-01
  • 信任的认知神经网络模型
    陈瀛,徐敏霞,汪新建()南开大学周恩来政府管理学院社会心理学系,天津300350收稿日期:2019-09-20出版日期:2020-04-26发布日期:2020-03-27通讯作者:汪新建E-mail:wangxj@nankai.edu.cn基金资助:&教育部哲学社会科学研究重大课题攻 ...
    本站小编 Free考研考试 2022-01-01
  • 稀缺对个体心理和行为的影响:基于一个更加整合视角下的阐释
    雷亮(),王菁煜,柳武妹兰州大学管理学院,兰州730000收稿日期:2019-05-13出版日期:2020-04-26发布日期:2020-03-27通讯作者:雷亮E-mail:leil@lzu.edu.cn基金资助:&国家自然科学基金面上项目(71972092);国家自然科学基金重点 ...
    本站小编 Free考研考试 2022-01-01
  • 空间频率影响恐惧面孔表情加工的神经通路
    贺则宇,张紫琦,李可轩,何蔚祺()辽宁师范大学脑与认知神经科学研究中心,大连116029收稿日期:2019-06-20出版日期:2020-04-15发布日期:2020-02-24通讯作者:何蔚祺E-mail:weiqi79920686@sina.com基金资助:国家自然科学基金面上项目(319709 ...
    本站小编 Free考研考试 2022-01-01
  • 儿童行为抑制性与心理障碍关联的认知神经过程
    尤媛,王莉()北京大学心理与认知科学学院,北京100871收稿日期:2019-05-05出版日期:2020-04-15发布日期:2020-02-24通讯作者:王莉E-mail:liwang@pku.edu.cn基金资助:国家自然科学基金(31771230)Cognitiveneurologicalp ...
    本站小编 Free考研考试 2022-01-01