1.Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China 2.School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Fund Project:Project supported by the Natural Science Foundation of Shanghai, China (Grant No. 20ZR1428400), the Pujiang Program of Shanghai, China (Grant No. 20PJ1408100), and the Shanghai Talent Program, China
Received Date:03 October 2021
Accepted Date:23 November 2021
Available Online:01 December 2021
Published Online:05 December 2021
Abstract:This review reports a series of theoretical and experimental progress on researches of the transverse field Ising chain (TFIC) and the quantum E8 integrable model. For the TFIC, on one hand, a unique exotic quantum critical behavior of Grüneisen ratio (a ratio from magnetic or thermal expansion coefficient to specific heat) is theoretically established; on the other hand microscopic models can accommodate the TFIC universality class are substantially expanded. These progresses successfully promote a series of experiments collaborations to first-time realize the TFIC universality class in quasi one-dimensional anti-ferromagnetic material BaCo2V2O8 and SrCo2V2O8. For the quantum E8 integrable model, the low temperature local dynamics and the dynamical structure factor with zero transfer momentum of this system are analytically determined, where a cascade of edge singularities with power-law divergences are obtained in the continuum region of the dynamical structure factor. After combining with detailed quantum critical scaling behaviors analysis and large scale iTEBD calculation, it successfully facilitates a series of experiments, including THz spectrum measurements, inelastic neutron scattering and NMR experiments, to realize the quantum E8 integrable model in BaCo2V2O8 for the first time. The experimental realization of the quantum E8 integrable model substantially extends the frontiers of studying quantum integrable models in real materials. The series of progress and developments on the TFIC and the quantum E8 integrable model lay down a concrete ground to go beyond quantum integrability, and can inspire studies in condensed matter systems, cold atom systems, statistical field theory and conformal field theory. Keywords:integrable systems/ quantum magnetism/ universality class/ spin dynamics
其中$ \varepsilon_{k} = 2 J\sqrt{1+g^2-2 g\cos(ka)} $为单粒子激发谱, $ a $为晶格常数, $ {\boldsymbol{\gamma}}_{k}^{\dagger} $和$ {\boldsymbol{\gamma}}_{k} $分别为波格留波夫变换后的费米子产生湮灭算符. 显然, 当$ g \neq 1 $时, 系统存在能隙, 该能隙在$ g = g_{{\rm{c}}} = 1 $时消失. 零温时, 该模型存在一个横场驱动的铁磁相和顺磁相之间的量子相变(图1)[1,22], 对应的QCP位于$ g_{{\rm{c}}} $. 图 1 TFIC模型相图. $ g $为横场参数, $ g_{{\rm{c}}} = 1 $为QCP. 在相变点左侧, 青蓝色实线代表零温下的铁磁相; 在相变点右侧, 黄色实线代表零温下的顺磁相. 相图中的两斜虚线为低温下各个不同无序区域的过渡边界, 而上方虚线则是量子临界区域到经典区域的过渡边界 Figure1. A phase diagram of TFIC, where $ g $ labels transverse field, and $ g_{{\rm{c}}} = 1 $ is the QCP. The cyan solid line represents for ferromagnetic phase at zero temperature on the left of the critical point, while on the right the yellow solid line stands for a paramagnetic phase at zero temperature. The two tilted dotted lines illustrate the crossovers of different disorder phases in low temperature region, while the dotted line above shows a crossover from quantum critical region to classical region.
利用iTEBD数值方法, 在$g_{x}{\text{-}}g_{y}{\text{-}}\varepsilon$三维参数空间内可以精确计算该有效模型中展现伊辛普适类物理的QCPs, 所有的QCPs组成了$g_{x}{\text{-}}g_{y}{\text{-}}\varepsilon$参数空间内一量子临界曲面, 如图2[35]所示. 图 2 由iTEBD计算得出的针对模型方程(7)的量子临界曲面 (图片经文献[35]允许转载, 版权归2019 IOP Publishing Ltd 所有) Figure2. Quantum critical surface calculated by iTEBD algorithm for Eq. (7). (Reprinted with permission from Ref. [35]. Copyright 2019 IOP Publishing Ltd.)
该理论工作进一步考察了带有交错横场的海森伯-伊辛链存在沿$ z $方向的4周期磁场微扰项的情形, 发现这一微扰项仅轻微移动QCP的位置而不改变相应的伊辛普适类. 计算结果见图3[35]. 图 3 (a)交错磁化$ M_{z}(g) $的计算结果. 蓝线和红线分别代表了带有和不带有4周期项的数据. 这两条曲线可以分别用$M_{z} = $$ 0.524(g_{{\rm{c}}1}-g)^{0.126}$和$ M_{z} = 0.530(g_{{\rm{c}}2}-g)^{0.128} $来拟合, 其中$ g_{{\rm{c}}1} = 0.1454 $, $ g_{{\rm{c}}2} = 0.1456 $, 在误差精度范围内均可得到临界指数为$ 1/8 $的结论. 内嵌图是利用对数坐标轴画出的$ M_{z} $的标度行为. (b)半对数坐标轴下纠缠熵$ S_{{\rm{EE}}}(l) $和链长$ l $的关系, 两种情况都符合伊辛普适类的$ 1/2 $中心荷. (c)当$ g = 0.1448 $时, 自旋两点关联函数和距离$ i-j $间的函数关系. 内嵌图展示了$ \ln C(i-j) $在长程时与$ i-j $成正比. (d)关联长度的倒数和$ g $的函数关系, 两种情况都符合伊辛普适类中关联长度指数$ \nu = 1 $的结论(图片经文献[35]允许转载, 版权归2019 IOP Publishing Ltd 所有) Figure3. (a) iTEBD results for staggered magnetization $ M_{z}(g) $. The blue line and red line represent iTEBD data with and without the four periodic term, respectively. The two curves can be fitted with $ M_{z} = 0.524(g_{{\rm{c}}1}-g)^{0.126} $ and $ M_{z} = 0.530(g_{{\rm{c}}2}-g)^{0.128} $, where $ g_{{\rm{c}}1} = 0.1454 $, $ g_{{\rm{c}}2} = 0.1456 $, and critical exponent $ \delta = 1/8 $ is obtained within error bar for both cases. Inset shows scaling behavior of $ M_{z} $ in $ \log-\log $ plot. (b) Entanglement entropy $ S_{{\rm{EE}}}(l) $ versus length $ l $ in a semi-$ \log $ plot, both fall into central charge $ c = 1/2 $ of TFIC universality. (c) Spin-spin correlation function versus distance $ i-j $ at $ g = 0.1448 $. Inset shows $ \ln C(i-j) $ being proportional to $ i-j $ in long range region. (d) The inverse of correlation length in terms of $ g $, both agree with correlation length exponent $ \nu = 1 $. (Reprinted with permission from Ref. [35]. Copyright 2019 IOP Publishing Ltd.)
而$ \xi $轴、$ \psi $轴和$ \zeta $轴代表将实验室的XYZ坐标轴绕Y轴转$ \theta $角, 绕Z轴转$ \phi $角后得到的材料中的局域坐标轴. CoO$ _{6} $的晶格结构、螺旋链结构及坐标轴间的关系如图4所示. 图 4 (a) CoO6八面体的结构; (b) CoO6四周期螺旋链的单元结构及局域坐标系$ \xi\psi\zeta $; (c)局域坐标系$ \xi\psi\zeta $与实验室坐标系XYZ的关系 Figure4. (a) Structure of CoO6 octahedron; (b) a unit structure of CoO6 four-period screw chain and the local coordinate $ \xi\psi\zeta $; (c) relation between the local coordinate $ \xi\psi\zeta $ and the lab coordinate XYZ.
对于外加磁场沿[110]和[100]两种情况, $ \phi_{1} $分别取$ 0^{\circ} $和$ 45^{\circ} $. 以BCVO为例, 若对该材料施加沿[110]的磁场, 则$ g_{xy} = g_{xz} = 0 $, 可以避免诱导出有效交错横场. 在低温下对该材料进行磁热效应测量, 可以得到随温度和横场变化的格林艾森比率数据. 对该数据的标度行为分析完全符合理论上对TFIC模型格林艾森比率量子临界行为的预期, 从而确认该材料QCP在$ B_{\perp}^{{\rm{c}}} = 40 $ T附近, 并在该点附近涌现出伊辛普适类(图5)[33]. 图 5 (a) BCVO材料在加[110]方向磁场后的相图, 利用从不同起始温度出发的绝热磁热测量得出. 红色区域内直到$ 20 $T处标记了一有限温的三维序. 一维QCP出现在$ B_{\perp}^{{\rm{c}}} = 40 $T附近, 上方黄色区域为量子临界区. (b), (c)以磁场和温度作为自变量的格林艾森比率实验数据. 在图(b)中, 大于QCP时不同温度的数据展现了$ \varGamma_{B}\approx (B-B_{\perp}^{{\rm{c}}})^{-1} $的发散行为. 相对应地, 当场强在临界场强附近时, 低温下格林艾森比率$ \varGamma_{B}(T) $趋于收敛(图片经文献[33]允许转载, 版权归2018 American Physical Society 所有) Figure5. (a) Phase diagram of BCVO material with a transverse field along [110], obtained from adiabatic magnetocaloric-effect measurements starting from different temperatures. Red area labels a finite-temperature three dimensional (3D) order until 20 T. The one dimensional (1D) QCP appears around $ B_{\perp}^{{\rm{c}}} = 40 $T, while the yellow area above labels quantum critical region. (b), (c) Experimental data of Grüneisen ratio in terms of magnetic field and temperature. In panel (b) data of different temperature above the QCP shows divergent behavior of $ \varGamma_{B}\approx (B-B_{\perp}^{{\rm{c}}})^{-1} $. Correspondingly, with the field being around the critical field, Grüneisen ratio converges in low temperature. (Reprinted with permission from Ref. [33]. Copyright 2018 American Physical Society)
其中$ J\approx 7.5 $ meV, 各向异性因子$ \varepsilon = 0.47 $. $ g_{x}\approx 2.79 $为旋磁比率, 诱导出的有效交错横场$ {\boldsymbol{H}}_{y}\approx 0.4 {\boldsymbol{H }}$, 四周期场$ {\boldsymbol{H}}_{z}\approx 0.14 {\boldsymbol{H}} $. 利用NMR实验可以测量此时的QCP及其普适类, 测量结果见图6[34]. 在SCVO中, 沿[100]方向调节磁场会涌现出两个QCPs, 记为$ H_{{\rm{c}}1} $和$ H_{{\rm{c}}2} $. 其中, $ H_{{\rm{c}}1}\approx 7.03 $ T代表三维序的终点, 而$ H_{{\rm{c}}2}\approx 7.7 $ T对应伊辛普适类的量子临界点[34]. 图 6 外加[100]方向磁场的SCVO材料相图. 图中AFM, QCR和QD分别代表反铁磁相、量子临界区和量子无序区. 两个QCPs分别为$ H_{{\rm{c}}1}\approx 7.03\; {\rm{T}} $和$ H_{{\rm{c}}2}\approx 7.7\; {\rm{T}} $. 蓝色线可以被曲线$ T_{{\rm{cr}}}^{{\rm{L, H}}}\sim \vert H_{{\rm{c}}2}-H \vert $所拟合, 揭示了该QCP对应伊辛普适类. 内嵌图是两QCPs附近拟合曲线的放大 (图片经文献[34]允许转载, 版权归2019 American Physical Society 所有) Figure6. Phase diagram of SCVO with transverse field along [100]. The AFM, QCR and QD in the figure corresponds to anti-ferromagnetic phase, quantum critical region and quantum disordered region, respectively. The two QCPs are $ H_{{\rm{c}}1}\approx 7.03 \;{\rm{T}} $ and $ H_{{\rm{c}}2}\approx 7.7\; {\rm{T}} $. The blue line can be fitted with $ T_{{\rm{cr}}}^{{\rm{L, H}}}\sim \vert H_{{\rm{c}}2}-H \vert $, implying the Ising universality of the 1D QCP. Inset is an enlarged figure of the fitting curves near two QCPs. (Reprinted with permission from Ref. [34]. Copyright 2019 American Physical Society)
$ E_{8} $模型包含有8种不同的准粒子激发. 其中最轻的准粒子质量$ m_{1} = Ch^{8/15} $, $ C = 4.4049\cdots$[58]. 而次轻准粒子质量$ m_{2} $与$ m_{1} $满足黄金分割, 即$m_{2} = $$ 2\cos(\pi /5)m_{1}\approx 1.618 m_{1}$. 其他准粒子的质量都可以通过$ m_{1} $及$ m_{2} $精确地得到. $ E_{8} $模型相图如图7所示. 该相图给出了$ E_{8} $准粒子激发与伊辛普适类的联系: 在TFIC模型的伊辛普适类处, QCP附近的物理可以用中心荷$ 1/2 $的共形场论描述. 此时纵向磁场的微扰提供了一个微弱的禁闭效应, 引起一系列完美共振的介子态, 从而产生8种$ E_{8} $模型的准粒子激发[59,60]. 因此纵向磁场较小的区间正是可以涌现出量子$ E_{8} $模型的区间, 如图7中蓝色区域所示.而这些准粒子间的精确质量关系亦见于图7. 图 7$ E_{8} $模型相图. 图中蓝色实线代表了$ E_{8} $模型涌现的区域, 其中$ g $和$ h_{z} $分别对应于横场参数$ g $和方程(17)中的$ h_{z} $. 其余$ E_{8} $准粒子的质量和$ m_{1} $和$ m_{2} $的关系列于右上, 其中$ m_{1} $为最轻准粒子的质量 Figure7. A phase diagram of $ E_{8} $ model. The blue solid line in the figure implies region of $ E_{8} $ model emerging, where $ g $ and $ h_{z} $ correspond to transverse parameter $ g $ and $ h_{z} $ in Eq. (17) respectively. Relations of other $ E_{8} $ particles' masses to $ m_{1} $ and $ m_{2} $ are listed in the top right-hand corner, where $ m_{1} $ is mass of the lightest particle.
其中交错纵场$\mu_{{\rm{B}}}{{H}}'\displaystyle\sum\nolimits_{n}(-1)^{n}{\boldsymbol{S}}_{n}^{z}$仅在材料处于三维反铁磁序内(其三维量子相变点在10 T左右 (图9)), 利用链平均场描述链间相互作用时才会出现. 根据上文提及的SCVO材料的相关参数, 其对应于伊辛普适类的最低临界磁场值为$ 7.7 $ T位于三维量子相变点$ 7.0 $ T以外, 所以此材料缺乏能产生交错纵场的机制或手段[34-37], 难以实现$ E_{8} $模型. 而对BCVO材料来说, 相互作用$ J = 5.8 $meV, 利用iTEBD数值计算及NMR实验, 可以确定其伊辛普适类的临界磁场位于$\mu_{0}{{H}} = 4.7$ T处 (图10), 处在三维序内且远离三维量子相变点, 因此存在由链间相互作用平均后大小为$\mu_{{\rm{B}}}{{H}}' = 0.018 J$的有效弱交错纵向磁场, 为实现$ E_{8} $模型提供了可能. 确实, 在该材料三维序内, 进一步的非弹性中子实验将沿[010]方向所加横场调到4.7 T时得到的自旋动力学关联谱与解析计算得出的$ E_{8} $模型单粒子及多粒子激发谱及从(22)式出发的iTEBD数值计算结果高度符合, 如图11所示. 这是人们首次在真实材料中实现$ E_{8} $模型, 不仅明确测量到了单$ E_8 $粒子激发, 同时确认了多$ E_8 $粒子激发, 是强关联磁性系统研究的一次重大进展. 图 9 (a) BCVO的晶格结构. (b) 加沿[010]方向磁场后BCVO的相图, QCP为$ H_{{\rm{c}}}^{1 {\rm{D}}} $, 隐藏在三维序中, 其一维量子临界行为可在三维序外测得. 棕色圆圈代表由NMR实验测出的尼尔(Néel)温度$ T_{{\rm{N}}} $. $H_{{\rm{c}}}^{3{\rm{ D}}} = (10.4\pm 0.1)\;\text{T}, \; H_{{\rm{c}}}^{1 {\rm{D}}} = (4.7\pm 0.3)$T. $ E_{8} $模型在蓝色缎带区涌现. (c) 8种$ E_{8} $粒子的质量以$ m_{1} $为单位沿能量轴分布(图片经文献[37]允许转载, 版权归2021 American Physical Society 所有) Figure9. (a) Crystal structure of BCVO. (b) Phase diagram of BCVO with a transverse field along [010] direction. QCP is at $ H_{{\rm{c}}}^{1{\rm{ D}}} $, hidden in the 3D order. Its quantum criticality can be measured outside the 3D ordering phase. Brown circles represent for Néel temperature $ T_{{\rm{N}}} $ measured by NMR experiments. $H_{{\rm{c}}}^{3 {\rm{D}}} = (10.4\pm 0.1)\;\rm {T}, \; H_{{\rm{c}}}^{1 {\rm{D}}} = (4.7\pm 0.3)\;\rm {T}$. $ E_{8} $ model emerges in the blue ribbon area. (c) Masses of eight $ E_{8} $ particles along energy axis in unit of $ m_{1} $. (Reprinted with permission from Ref. [37]. Copyright 2021 American Physical Society)
图 10 三维反铁磁序外NMR实验测量结果 (a) 在不同横场下测得自旋-晶格弛豫率$ 1/T_{1} $关于温度的函数. 下箭头标记出决定$T_{{\rm{N}}}$的$ 1/T_{1} $的峰. (b)拟合$ 1/T_{1} $得到能隙, 温度区间为6—12 K. 具体细节见文献[37]. QCP位于$ (4.7\pm 0.3) $T. 内嵌图是对数坐标下放大的低温区数据. 灰色直线区域内的量子临界行为可以拟合为$ 1/T_{1}\sim T^{-0.75} $(图片经文献[37]允许转载, 版权归2021 American Physical Society 所有) Figure10. NMR experiment result outside the 3D anti-ferromagnetic ordering phase. (a) Spin-lattice relaxation rate $ 1/T_{1} $ with different transverse fields as a function of temperature. The down arrows label $ 1/T_{1} $ peaks that determining $T_{{\rm{N}}}$. (b) Energy gap by fitting $ 1/T_{1} $, with temperature being from 6 K to 12 K. The details can be found in Ref. [37]. QCP is at $(4.7\pm 0.3)$ T. Inset: a $ \log-\log $ plot of enlarged data in low-temperature region. The quantum critical behavior around the gray line area can be fitted by $ 1/T_{1}\sim T^{-0.75} $. (Reprinted with permission from Ref. [37]. Copyright 2021 American Physical Society)
图 11 (a) $ Q = (002) $QCP处INS测量数据, 场强$ H = 4.7 $T, 温度$ 0.4 $K. 蓝色方块及误差棒为实验测量数据, 黑线是高斯函数的拟合. 红色竖线对应于8种$ E_{8} $模型的粒子. 其他的峰来自于多粒子通道的连续谱贡献以及布里渊区折叠效应(标记于$ F_{1} $和$ F_{2} $处). (b) 解析计算的$ D^{xx}(\omega) $, 数据经过$ 0.08 m_{1} $洛伦兹展宽. $m_{1} = 1.2\;\text{meV}$. 红色线和黑色线分别代表单粒子激发贡献及引入多粒子激发贡献的总和. (c) iTEBD数值计算有效模型在转移动量$ q = 0 $处的激发谱, 其中蓝线和黑线代表不包含及包含折叠效应的数据. (d)—(g) 单粒子到四粒子激发通道的贡献, $ ijkl $代表激发来自于$ m_{i}m_{j}m_{k}m_{l} $通道(图片经文献[37]允许转载, 版权归2021 American Physical Society 所有) Figure11. (a) INS data obtained from $ Q = (002) $ at QCP with $ H = 4.7 $ T, temperature $ 0.4 $ K. The blue diamonds with error bars are experimental data, the black curve is fitted with Gaussian functions. The red vertical lines correspond to eight particles of $ E_{8} $ model. Other peaks are contributed from multi-particle channels and zone-folding effect (labelled at $ F_{1} $ and $ F_{2} $). (b) Analytical result of $ D^{xx}(\omega) $ with a $ 0.08 m_{1} $ Lorentzian boradening. $m_{1} = 1.2\;\text{meV}$. Red curve and black curve are single particle spectrum and total spectrum including multi-particle excitations respectively. (c) Effective model spectrum of iTEBD calculation at $ q = 0 $, where blue curve and black curve are results of without and with zone-folding effect. (d)–(g) single particle-four particle excited channels' contributions, where $ ijkl $ represents for $ m_{i}m_{j}m_{k}m_{l} $ channel. (Reprinted with permission from Ref. [37]. Copyright 2021 American Physical Society)