1.School of Physics and Mechatronics Engineering, Jishou University, Jishou 416000, China 2.Department of Physics and Electronic Engineering, Tongren University, Tongren 554300, China
Fund Project:Project supported by the the National Nature Science Foundation of China (Grant Nos. 12064038, 12165008), the NSF of Guizhou Province Education Department, China (Grant Nos. KY[2019]179, KY[2017]315, ZK[2021]034), the Outstanding Young Science and Technology Talents of Guizhou Pronice, China (Grant No. [2019]5673), and the NSF of Tongren Science and Technology Bureau, China (Grant No. [2020]77).
Received Date:19 May 2021
Accepted Date:19 June 2021
Available Online:15 August 2021
Published Online:20 November 2021
Abstract:The influence of high-order effects on the stability of the optical soliton in a semiconductor three-quantum-dot molecular system under the excitation of narrow pulse probe light is analyzed analytically by using the multi-scale method. The results show that optical soliton described by the standard nonlinear Schr?dinger equation will have a large attenuation in the propagation process, while the optical soliton described by the high-order nonlinear Schr?dinger equation has relatively good stability. In addition, numerical simulations of the interaction between optical solitons show that the amplitudes of the two optical solitons described by the standard nonlinear Schr?dinger equation attenuate rapidly after the collisions and radiation of more serious dispersion waves, while the shapes of the two optical solitons described by the high-order nonlinear Schr?dinger equation hardly changes after the collision. This is mainly because when the incident probe light pulse is narrow enough, the system must be described by a higher-order equation. The physical reason is that the higher-order effects in the equation, including non-instantaneous effects and third-order dispersion effects, cannot be ignored or treated as perturbations. This kind of stable optical soliton has potential application value for future optical information processing and transmission technology. Keywords:tunneling induced transparency/ optical solitons/ semiconductor quantum dot molecules
全文HTML
--> --> -->
2.理论模型及其麦克斯韦-薛定谔方程组根据现有的实验条件, 利用分子束外延法和原子层刻蚀法可构建如图1所示的对称TQD分子模型[27-30]. 该模型在中心频率为$ {\omega _{\text{p}}} $的窄脉冲弱探测场激发下, 在QD1内可形成电子空穴对的状态, 即激子态$ \left| 4 \right\rangle $, 同时通过外加偏置电压的作用, QD1导带中的电子将通过隧穿薄势垒耦合效应被限制在QD1与QD2, QD3的导带间[29,31]分别形成间接激子态$ \left| 2 \right\rangle $、$ \left| 3 \right\rangle $. 而对于能级$ \left| 1 \right\rangle $则是体系的基态. TQD系统的哈密顿量可表示为(假设$ \hbar = 1 $) 图 1 (a) TQD有效激子能级示意图; (b)相应能级结构图. ${{\varGamma} }_{m1}(m=2, 3, 4)$表示退相干通道, $ {\omega _{4 n}}(n = 1, 2, 3) $表示能级差, ${\varDelta _{\text{p}}} = {\omega _{\text{p}}} - {\omega _{{\text{41}}}}$为探测场与能级差$ {\omega _{{\text{41}}}} $的频率失谐量. Figure1. (a) Energy level diagram of TQD effective exciton; (b) corresponding energy level structure diagram.${\varGamma }_{m1} $$ (m=2, 3, 4)$represents the decoherent channel, ${\omega _{4 n}}\left(\right.n = $$ 1, 2, 3\left.\right)$represents the energy level difference, ${\varDelta _{\text{p}}} = {\omega _{\text{p}}} - $$ {\omega _{{\text{41}}}}$is the frequency detuning between the probe laser field and the energy level difference.
4.孤子稳定性分析为了检验孤子的稳定性, 在图3中分别以方程(14)和(15)作为初始条件, 对方程(2)进行了数值模拟. 图中实线、虚线、点虚线分别表示初态以及演化1个单位长度和2个单位长度时的数值结果. 从图3(a)中可以看出, 当孤子演化到1单位长度时, 其幅值迅速减小, 宽度有所增加, 并且在孤子前沿也辐射出了小振幅色散波; 随着演化距离逐渐增大到2个单位长度, 对应的孤子幅值和宽度也分别出现了进一步的减小和增加, 同时色散波的辐射也越来越严重. 这表明孤子在传播的过程出现了较为严重的衰减失真. 反观图3(b): 随着孤子的逐渐演化, 除孤子幅值发生轻微减小外, 整体看来, 孤子的形状几乎不发生明显变化, 这表明孤子能够稳定传播. 对比图3(a)、图3(b)可以得知, 当探测光的脉冲宽度较窄时, 使用HNLS方程的基阶孤子解得到的演化结果较前者更为稳定. 图 3 (a)方程(14)作为初始条件的数值演化结果; (b)方程(15)作为初始条件的数值演化结果. 波形给出的演化距离为1个单位长度(虚线)和2个单位长度(点虚线), 取$ {\tau _0} = 5 \times {10^{ - 13}}\;{\text{s}} $, $ \beta = 0.5 $, $\varPhi = {\text{0}}$, 其他参数与图2相同 Figure3. (a) Numerical evolution result using equation (14) as the initial condition; (b) numerical evolution result using equation (15) as the initial condition. The evolution distance given by the soliton waveform is 1 unit length (dotted line) and 2 unit lengths (dotted dotted line), and the parameters used are $ {\tau _0} = 5 \times {10^{ - 13}}\;{\text{s}} $, $ \beta = 0.5 $, $\varPhi = {\text{0}}$, other parameters used are the same as Fig. 2
为了进一步探究TQD系统中形成的光孤子的稳定性, 分别以方程(16a)、(16b)作为初始条件对方程(2)进行了孤子间碰撞的数值模拟分析(见图4). 图 4 相邻孤子间的相互作用 (a)方程(16a)作为初始条件的数值演化结果; (b)方程(16b)作为初始条件的数值演化结果. 除$ {\theta _1} = {\theta _2} = 0 $外, 其他参数与图2相同 Figure4. Interaction between adjacent optical solitons: (a) Numerical evolution result using equation (16a) as the initial condition; (b) numerical evolution result using equation (16b) as the initial condition. Except for $ {\theta _1} = {\theta _2} = 0 $, the other parameters are the same as in Fig. 2