Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 21973011) and the National Key R&D Program of China (Grant No. 2017YFA0403600).
Received Date:19 May 2021
Accepted Date:16 June 2021
Available Online:13 October 2021
Published Online:20 October 2021
Abstract:Two-dimensional magnetic semiconductors have received extensive attention due to their combination of magnetism, semi-conductivity and special two-dimensional structures, which also provide a new idea and platform for developing the nanometer spintronic and optoelectronic devices and also for conducting the related basic theoretical research. However, in addition to the common problems of two-dimensional magnetic semiconductor materials, such as volume manufacturing and environmental stability, the two-dimensional magnetic semiconductor materials have the unique difficulty, i.e. low Curie temperature, which makes it difficult to maintain ferromagnetic coupling at higher temperature. For example, the Curie temperature of the existing CrI3 monolayer is lower than 45 K, while that of the Cr2Ge2Te6 double-layer is only 20 K, which is far lower than the room temperature. Therefore, how to improve the Curie temperature of two-dimensional magnetic semiconductor materials through various approaches is one of the important issues that need to be resolved in this field of research. Based on the first-principles calculations, the exchange energies of a series of two-dimensional bimetallic iodides CrTMI6 (TM denotes transition metal elements in fourth and fifth rows) constructed from the lattice of CrI3 monolayer are preliminarily calculated and screened. Structures are fully relaxed until the force and the energy are converged to 0.01 eV/? and 10–6 eV, respectively, and the ferromagnetic CrMoI6 monolayer is selected. Further calculations show that the band structure of the CrMoI6 monolayer exhibits ideal semiconductor characteristics with a band gap of about 1.7 eV. At the same time, theoretical calculations with considering the spin-orbit coupling show that the CrMoI6 monolayer has a considerable magnetic anisotropy (741.3 μeV/TM), and its easy axis is perpendicular to the two-dimensional plane. Monte Carlo simulation based on the Heisenberg model predicts that the Curie temperature of CrMoI6 monolayer reaches 92 K, which is about twice that of the CrI3 monolayer. The molecular dynamics and phonon spectrum calculations also prove that it has both thermal and kinetic stability. In addition, under the condition of applying compressive and tensile strain, its ferromagnetic coupling shows strong stability. This kind of magnetic transition metal halide which can be synthesized by alloying will further expand the family of two-dimensional magnetic materials and their applications in the field of spintronic devices. Keywords:two-dimensional materials/ magnetic semiconductors/ Curie temperature/ magnetic anisotropy
全文HTML
--> --> --> -->
3.1.高通量筛选二维合金化合物CrTMI6
基于单层CrI3的晶体结构搭建二维合金化合物CrTMI6, 其中TM代表的是元素周期表中第四、第五周期的过渡金属元素, 如图1(a)所示. 具体来说, 从单层CrI3的2$ \times $2超胞结构入手, 使过渡金属元素替换超胞中50%的Cr原子, 形成CrTMI6双金属碘化物. 针对这些结构, 计算了每一种材料的铁磁和反铁磁结构的能量. 筛选准则为总交换能Eex的正负号和大小, 这里交换能为反铁磁耦合的超胞能量减去铁磁耦合的能量, 即$ {E_{{\text{ex}}}} = {E_{{\text{AFM}}}} - $$ {E_{{\text{FM}}}} $. 若结果为正值, 表示铁磁耦合更稳定; 若为负值则表示反铁磁耦合更稳定. Eex绝对值越大一般情况下说明耦合就越强. 考虑到计算量的问题, 这里只计算了如图1(b)所示的合金原子分布结构和基于该结构的两种反铁磁态和铁磁态的能量对比作为粗筛的依据. 图 1 (a)二维等价合金化合物CrTMI6中TM元素的选取示意图; (b)高通量计算中考虑的单层CrTMI6的铁磁构型和两种反铁磁构型; (c)使用GGA+U方法前后单层CrTMI6材料的交换能. 其中Eex1 = EAFM1 – EFM, Eex2 = EAFM2 – EFM; E(U)ex1和E(U)ex2为使用GGA+U后的相应值 Figure1. (a) Schematic diagram of the selection of TM element in the two-dimensional equivalent alloy compound CrTMI6; (b) ferromagnetic configuration and two antiferromagnetic configurations of monolayer CrTMI6 considered in high-throughput calculations; (c) exchange energy of CrTMI6 monolayer before and after GGA+U method applied, where Eex1 = EAFM1 – EFM, Eex2 = EAFM2 – EFM; E(U)ex1 and E(U)ex2 are the corresponding values using GGA+U.
表2过渡金属元素TM所使用的U值 Table2.Value of U used for the transition metal element TM.
23.2.单层CrMoI6的结构特性及稳定性 -->
3.2.单层CrMoI6的结构特性及稳定性
针对单层CrMoI6, 在上述的基本构型之外, 进一步设计了6种可能的合金原子排列结构(图2(a)). 对于Cr原子和Mo原子, 使用表2中所列的对应值来适当地考虑强关联电子. 计算结果表明, C2构型的能量最低, 这一结构中存在Mo(Cr)原子的二聚体, 这可能是使该结构相对稳定的原因. 如图2(b)所示, C2构型中的Mo原子间的平均距离约为6.5 ?, Mo和Cr原子相互间隔或过于聚集都会造成能量的略微上升. 图 2 (a)单层CrMoI6可能存在的6种不同构型; (b) C1—C6各构型相对C2构型平均到每个化学式的能量差和Mo-Mo间的平均距离; (c)单层CrMoI6的声子谱; (d)时长10 ps, 温度300 K的分子动力学模拟下, 系统温度和总能量的变化以及模拟结束时的结构 Figure2. (a) Six possible configurations of CrMoI6 monolayer that may exist; (b) energy difference of C1?C6 configuration relative to C per chemical formula and the average bond distance between Mo-Mo; (c) phonon spectrum of CrMoI6 monolayer; (d) molecular dynamics simulation with duration of 10 ps, 300 K and the variation curves of system temperature and total energy, as well as the structure at the end of simulation.
为了进一步验证单层CrMoI6更倾向于铁磁耦合, 考虑图3(a)所示的6种可能的反铁磁耦合结构. 计算结果表明, 铁磁态的能量最低, 相比反铁磁构型中能量最低的AFM1, 铁磁态平均到每个化学式的能量低约25 meV, 如图3(b)所示. 基于优化后的结构可以发现, Cr-I-Mo, Cr-I-Cr和Mo-I-Mo的键角均位于94°—95°区间内, 根据Goodenough-Kanamori-Anderson (GKA)规则[27-29], 这类键角在90°左右的磁性离子间的超相互作用(super-exchange interaction)一般会带来材料的铁磁序, 这可以解释上述计算得到的铁磁耦合下单层CrMoI6能量最低的结果. 图 3 (a)单层CrMoI6的6种反铁磁构型示意图; (b)不同反铁磁构型相对于铁磁构型平均到每个化学式的能量差; (c)单层CrMoI6的能带结构示意图, 红色实线表示自旋向上通道, 蓝色实线表示自旋向下通道; (d) Cr, Mo合金体系的轨道演化及能级差示意图; (e)单层CrMoI6的自旋向上状态的分轨道能带结构, Cr的$ {\text{e}}_{\text{g}} $和${\text{t}}_{\text{2g}}$轨道分别用浅蓝色和深蓝色表示, Mo的$ {\text{e}}_{\text{g}} $和${\text{t}}_{\text{2g}}$轨道分别用浅红色和深红色表示, 灰色表示Cr, Mo和I原子的s轨道以及p轨道; (f)使用HSE06杂化泛函计算得到的单层CrMoI6的能带结构图 Figure3. (a) Schematic diagram of six antiferromagnetic configurations of CrMoI6 monolayerand (b) energy difference per formula of different antiferromagnetic configurations. (c) Band structure of CrMoI6 monolayer. The solid red and blue lines represent the spin-up and spin-down channels, respectively. (d) schematic diagram of orbital evolution and energy level difference of Cr and Mo alloy systems. (e) Band structure of CrMoI6 monolayer in the spin-up state. The $ {\text{e}}_{\text{g}} $ and ${\text{t}}_{\text{2g}}$ orbitals of Cr and Mo atoms are shown in light blue, dark blue, light red and dark red, respectively. The s and p orbitals of Cr, Mo, and I atoms are shown in gray. (f) Band structure of CrMoI6 monolayer calculated with HSE06 functional.
其中θ和φ对应的方向角如图4(a)所示. 从计算结果可以看出, 单层CrMoI6的易磁轴(MAE能量为0的方向)垂直于xy平面, 即易磁轴的方向始终都指向二维材料平面外. 计算得到每个磁性原子沿z方向的能量比x方向和y方向分别低997.4和741.3 μeV(见图4(b)和图4(c)). 这样大的磁各向异性能在二维磁性材料中并不多见, 预测对材料抵抗热扰动来稳定长程磁性耦合有重要作用. 图 4 (a) θ和φ的示意角度及xy轴在结构平面上的方向; (b)全空间内的磁各向异性能分布; (c)垂直于y轴方向的xz平面内的磁各向异性能分布极坐标图; (d)交换相互作用J1—J6的示意图; (e)单层CrMoI6的磁矩及磁化率随温度的变化曲线; (f)单层CrI3的磁矩及磁化率随温度的变化曲线 Figure4. (a) Schematic angles of θ and φ and the direction of the xy axis on the structure plane; (b) distribution of magnetic anisotropy energy in the whole space; (c) polar coordinate diagram of magnetic anisotropic energy distribution in the xz plane perpendicular to the y axis; (d) schematic diagram of exchange interaction J1–J6; The magnetic moment and susceptibility of (e) CrMoI6 monolayer and (f) CrI3 monolayer as a function of temperature.
在实验和应用过程中, 二维材料容易因衬底等外部因素的影响而受到应力作用, 并导致应变的产生, 这种应变往往会影响二维材料的物理性能. 因此, 本文进一步研究了应变对单层CrMoI6的磁性影响. 首先施加等比例的双轴应变, 体系总能量和交换能Eex的变化如图5(a)所示. 拉伸时反铁磁和铁磁的交换能会进一步增加, 而压缩时则会降低. 我们认为这是磁性离子间的直接相互作用和超相互作用竞争的结果. 磁性离子间的直接相互作用倾向于反铁磁耦合, 而前面提到的键角接近90°的超相互作用则带来铁磁耦合. 当拉伸时, 如图5(b)和图5(c)所示, 磁性离子间距增加, 直接相互作用减弱, 所以铁磁耦合增强. 而压缩时, 磁性离子间距减小, 直接相互作用增强, 所以铁磁耦合强度减弱. 另外, 我们发现键角偏离平衡位置也会减弱超相互作用带来铁磁耦合效果, 从图5(b)和图5(c)可以看到, 无论拉伸还是压缩, TM—I—TM的键角都会偏离原来的值, 造成图5(a)中铁磁耦合的减弱, 只是这种影响弱于离子间距改变对直接相互作用造成的影响. 图5(d)为在x, y单一方向施加应变的结果, 交换能的变化趋势和双轴应变的情况类似, 但变化幅度不同. 能量沿x方向变化较为平缓, 而y方向变化较为陡峭, 很显然这是由沿y方向的应变对磁性离子的间距影响更大造成的. 图 5 (a)双轴应变下CrMoI6单层的交换能以及总能量的变化; (b)施加拉伸及压缩应变时Cr—I—Cr和Mo—I—Mo的键长与键角随应变大小的变化; (c)施加拉伸及压缩应变时Cr—I—Mo的键角以及其中Cr—I和Mo—I的键长随应变大小的变化; (d)单轴应变下的交换能随应变大小的变化 Figure5. (a) Variation of exchange energy and total energy of CrMoI6 monolayer under biaxial strain; (b) variation of bond lengths and bond angles of Cr—I—Cr and Mo—I—Mo with strain under tensile and compressive strain; (c) variation of the bond angles of Cr—I—Mo and the bond lengths of Cr—I and Mo—I as a function of strain under tensile and compressive strain; (d) variation of exchange energy with strain under uniaxial strain.