1.State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun 130022, China 2.School of Science, Changchun University of Science and Technology, Changchun 130022, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61674021, 11674038, 61704011, 61904017, 11804335, 12074045), the Developing Project of Science and Technology of Jilin Province, China (Grant No. 20200301052RQ), the Project of Education Department of Jilin Province, China (Grant No. JJKH20200763KJ), and the Youth Foundation of Changchun University of Science and Technology, China (Grant No. XQNJJ-2018-18)
Received Date:23 April 2021
Accepted Date:25 May 2021
Available Online:07 October 2021
Published Online:20 October 2021
Abstract:GaAs-based semiconductor doping technology, in which impurity energy levels are introduced into the band gap, can give rise to a decisive effect on its electrical and optical properties. When GaAs material is reduced to one-dimensional nanoscale, due to the increase of specific surface area, wurtzite- zinc blende coexisting structure is prone to appearing. GaAs nanowire doping can not only adjust its electro-optical properties, but also have a significant regulatory effect on its structural phase transition. The effects of beryllium (Be) and silicon (Si) doping on crystal structure and optical properties of gallium arsenide (GaAs) nanowires (NWs) are studied in this paper. Primitive, Si-doped and Be-doped GaAs NWs are grown on Si(111) substrates by molecular beam epitaxy in virtue of the self-catalyzed growth mechanism. The Raman spectra of primitive, Si-doped and Be-doped GaAs NWs are measured. The E2 mode peak unique to the WZ structure of primitive GaAs NWs is found in the Raman spectrum, and the E2 mode peak in the Raman spectrum of Si-doped GaAs NWs weakens or even disappears. Moreover, The E2 mode peak is not found in the Raman spectrum of Be-doped GaAs NWs. Furthermore, the structural changes of GaAs NWs are observed more intuitively by high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The PL spectra show that the wurtzite (WZ)-zinc blende (ZB) mixed phase II-type luminescence exists in primitive GaAs NWs, then the luminescence disappears due to Si or Be doping and turns into impurity defect related luminescence. Keywords:GaAs nanowires/ structure/ doping/ molecular beam epitaxy
图 2 (a)本征, Si掺杂及Be掺杂GaAs纳米线的Raman光谱; (b)本征, (c) Si掺杂和(d) Be掺杂GaAs纳米线的多洛伦兹拟合图; (e)所有GaAs纳米线的GaAs LO与GaAs TO强度比值及GaAs LO的FWHM图 Figure2. (a) The Raman spectra of intrinsic, Si-doped and Be-doped GaAs NWs; (b) intrinsic, (c) Si-doped, and (d) Be-doped GaAs NWs are fitted by multi-Lorentzian functions; (e) intensity ratio of ILO/ITO and FWHM of GaAs LO for intrinsic, Si-doped and Be-doped GaAs NWs.
为了更清楚地阐明本征、Si掺杂和Be掺杂GaAs纳米线的晶体结构, 对其进行TEM测试, 如图3所示. 图3(a)—(c)是本征GaAs纳米线的低分辨TEM、高分辨TEM及对应的选区电子衍射图样. 本征GaAs纳米线的选区电子衍射图样存在三套衍射斑, 两套来自于ZB结构, 一套来自于WZ结构. ZB结构的衍射斑通过蓝色和红色虚线标记, 而WZ结构的衍射斑通过黄色虚线标记. 因此可以得到本征GaAs纳米线为WZ/ZB混相结构且存在大量的缺陷. 通过低分辨TEM、高分辨TEM及对应选区电子衍射图样表征Si掺杂GaAs纳米线的晶体结构, 如图3(d)—(f)所示. 图3(e)显示Si掺杂GaAs纳米线为ZB结构, 且存在多个孪晶面(twin planes, TP), 通过白色箭头标记. 图3(f)显示了两套ZB结构对应电子衍射斑, 分别被蓝色和红色虚线标记, 因此可以得到Si掺杂GaAs纳米线为纯相ZB结构. 通过低分辨TEM, HRTEM和选区电子衍射图样对Be掺杂GaAs纳米线的晶体结构进行表征, 如图3(g)—(i)所示. HRTEM及选区电子衍射图样显示Be掺杂GaAs纳米线为ZB结构. 因此, 掺杂实现了GaAs纳米线的相控制, 这与Raman光谱测试结果一致. 图 3 GaAs纳米线的TEM和选区电子衍射图. 本征GaAs纳米线 (a)低分辨TEM, (b)高分辨TEM及(c)对应的选区电子衍射图样; Si掺杂GaAs纳米线(d)低分辨TEM, (e)高分辨TEM及(f)对应的选区电子衍射图样; Be掺杂GaAs纳米线(g)低分辨TEM, (h)高分辨TEM及(i)对应的选区电子衍射图样 Figure3. TEM and SAED of GaAs NWs: (a) Low-TEM, (b) HRTEM and (c) SAED of intrinsic GaAs NW; (d) low-TEM, (e) HRTEM and (f) SAED of Si-doped GaAs NW; (g) low-TEM, (h) HRTEM and (i) SAED of Be-doped GaAs NW.
在此基础上, 研究掺杂对GaAs纳米线光学特性的影响. 图4显示了本征、Si掺杂和Be掺杂GaAs纳米线的低温(10 K)光致发光光谱. 本征GaAs纳米线的PL光谱显示两个主要的发光峰, 标记为A和B, 对应的波长(能量)分别为818.4 nm (1.515 eV)和831.1 nm (1.492 eV). 立方相ZB结构的GaAs体材料激子跃迁峰位(能量)约为816.3 nm (1.519 eV). Si掺杂GaAs纳米线的PL光谱显示明显的展宽峰, 且包含两个主要的发光峰, 标记为C和D, 对应的波长(能量)分别是828.8 nm (1.496 eV)和848.7 nm (1.461 eV). 另外, Be掺杂GaAs纳米线的PL光谱也显示两个明显的发光峰, 标记为E和F, 对应的峰位分别是816.4 nm (1.519 eV)和828.3 nm (1.497 eV). 图 4 本征, Si掺杂和Be掺杂GaAs纳米线的低温(at 10 K)下光致发光光谱, 激发光源的功率密度为300 mW/cm2 Figure4. The PL spectra of intrinsic, Si-doped and Be-doped GaAs NWs at low temperature (10 K). The power density of the excitation light source is 300 mW/cm2.
为了确定本征GaAs纳米线的发光来源, 本文进行低温变功率光谱测试(图5). 图5(a)显示随着功率密度的增加, 峰P(A)的峰位没有变化, 而峰P(B)的峰位随着功率密度的增加存在小幅度的蓝移, 该现象是由II-型能带弯曲效应所引起[24,25]. 峰P(A)和P(B)的积分强度与激发功率密度之间的关系如(1)式所示[25,26]: 图 5 本征GaAs纳米线光谱图 (a)本征GaAs纳米线在不同功率密度下的PL光谱曲线; (b)本征GaAs纳米线中峰P(A)和峰P(B)强度随功率密度的关系曲线; (c) P(A)和P(B)峰位和功率1/3(P1/3)的关系曲线 Figure5. The PL spectra of intrinsic GaAs NWs: (a) The PL spectral curves of intrinsic GaAs NWs at different power density; (b) the relationship between peak P (A) and P (B) intensity with power density in intrinsic GaAs NWs; (c) the relationship between P(A) and P(B) peaks and P1/3.
$ I = \eta I_0^\alpha \text{, } $
其中, I0为激光辐射功率, η为辐射效率, 指数α被用来判断辐射复合机制. α的值在1和2之间, 发光源于激子复合; α的值约2时, 为导带-价带之间的发光; α的值小于1时, 发光来源为缺陷或者杂质相关的发光. 本征GaAs纳米线的峰P(A)和峰P(B)对应的α值分别为1.58和0.86, 如图5(b)所示, 因此可以确定峰P(A)为自由激子发光, 峰P(B)为缺陷或者杂质之间的发光. 对于本征GaAs纳米线由于没有引入掺杂, 所以可以确定峰P(B)源于缺陷的发光. 在这里, 构建功率的1/3次方(P1/3)与峰位之间的关系, 如图5(c)所示, 发现峰P(B)的峰位与P1/3呈现线性关系, 即$ E \propto {P^{1/3}} $[26,27], 对应的发光源于WZ/ZB II-型结构的特性. 对GaAs纳米线进行掺杂, 对应的发光峰出现明显的变化, Si掺杂和Be掺杂GaAs纳米线低温(at 10 K)下变功率测试结果如图6所示. 从图6(a)中可以看到Si掺杂GaAs纳米线的强度随着功率密度的增加而增加, 但对应的峰形没有出现明显的变化. 为了更好地确定对应的两个峰P(C)和P(D)的发光来源, 对其变功率光谱进行高斯拟合, 同时建立功率密度与积分强度之间的关系((1)式), 对应的α值分别为0.72和0.65, 如图6(b)所示, 因此可以确定峰P(C)和峰P(D)为缺陷或者杂质之间的发光. Arab等[28]报道的Si掺杂GaAs纳米线的发光峰对应的峰位为1.496, 1.488, 1.469和1.460 eV, 这些峰源于Si杂质相关的发光. 本文中Si掺杂GaAs纳米线低温PL光谱对应的峰位为1.496 eV和1.461 eV, 因此Si掺杂GaAs纳米线的发光峰源于Si杂质缺陷. 为了更进一步确定其发光来源, 构建功率密度与两个发光峰峰位之间的关系, 如图6(c)所示. 从图中可以发现, 峰P(C)随着激发功率密度的增加, 峰位轻微的蓝移, 峰P(C)为导带到受主的发光[29,30]. 同时随着功率密度的增加, 1.461 eV发光峰位出现明显的蓝移现象, 这种现象与施主-受主对(DAP)辐射复合发光相似. DAP辐射复合的峰位可以被描述[29,31-33]为 图 6 掺杂GaAs纳米线的光谱图 (a)不同功率密度下Si掺杂GaAs纳米线的PL光谱曲线; Si掺杂GaAs纳米线中P(C)和P(D)积分强度(b)和峰位(c)随功率密度的关系曲线; (d)不同功率密度下Be掺杂GaAs纳米线的PL光谱曲线; Be掺杂GaAs纳米线中P(E)和P(F)峰积分强度(e)和峰位(f)随功率密度的关系曲线 Figure6. The PL spectra of doped GaAs NWs: (a) The PL spectral curves of Si-doped GaAs NWs at different power density; the relationship between P (C) and P (D) integral intensity (b) and peak positions (c) with power density in Si-doped GaAs NWs; (d) the PL spectral curves of Be-doped GaAs NWs at different power density; The relationship between P (E) and P (F) peak integral intensity (e) and peak positions (f) with power density in Be-doped GaAs NWs.