Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronic, Xiangtan University, Xiangtan 411105, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11874315, 11874316, 11974300), the Graduate Research and Innovation Program of Hunan Province, China (Grant No. CX20190472), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_17R91), and the National Basic Research Program of China (Grant No. 2015CB921103)
Received Date:02 April 2021
Accepted Date:17 May 2021
Available Online:07 June 2021
Published Online:05 October 2021
Abstract:Siligraphene, as a composite of graphene and silicene, has attracted widespread attraction since it has many excellent properties that neither of graphene and silicene possesses. The properties of siligraphene are closely related to the distribution of Si atoms and its structure, but most of the current researches of siligraphene focus on the regular distribution of Si atoms and the planar structure with high symmetry. Therefore, we study in this work all possible Si atoms’ distributions with planar and nonplanar structures for siligraphene g-SiC7 based on density functional theory. At first, 365 kinds of inequivalent Si atoms’ distributions in g-SiC7 are selected out from the 35960 kinds of Si atoms’ distributions, and then for each inequivalent Si atoms’ distribution, a comparison of the stability between the planer and nonplanar structures is made. In terms of the Si distribution, the Si atoms tend to gather together to lower the energy. The more dispersed Si atoms’ distribution usually has appreciably higher energy. In terms of the planarity of the structures, it is found that there are many non-planar structures with significantly lower energy than the planar ones. For all possible Si atoms’ distributions, there are only 8 planar structures which are stable against out-of-plane perturbations. We further study the dynamic, thermodynamic and mechanical stability of the structures with the lowest energies and find that they are stable. The energy band calculation shows that two Dirac valleys still persist in the first Brillouin zone despite their appreciable structure deformation, and a considerable band gap is opened at the Dirac point. We calculate the Berry curvatures and find that the Berry curvatures at the inequivalent valleys are opposite, indicating that the system has valley degree of freedom. Our research shows that siligraphene is more likely to have a buckled structure and a more concentrated silicon atoms’ distribution, and the most stable structures have good electronic properties. Keywords:siligraphene/ silicon distribution/ planar and nonplanar structures/ first-principles calculation
全文HTML
--> --> -->
3.结果与讨论文献中研究的 g-SiC7 具有高对称的 Si 分布[16-18,22], 可通过在4 × 4的石墨烯超胞中 (32个C原子) 用四个Si原子替代C原子得到, 如图1所示. 后面的讨论都以此高对称分布为参照, 记其为g0-SiC7. 在实际中, 不能排除有其它Si分布的可能性, 而且也没有研究证实g0-SiC7在能量上是更低的. 为了考虑g-SiC7中各种可能的Si原子分布, 在4 × 4的石墨烯超胞中用四个Si原子任意替换四个C原子, 共有$C_{32}^4 = 35960$种分布. 在这些分布中, 有很多是等价的, 因此需要筛除重复的分布. 借助RG2的去重复功能, 最终确认了365种不等价Si分布构型, 进而避免了大量的重复计算. 以往对g-SiC7的研究一般只考虑了如图1所示的平面结构[16,17]. 在本文中, 对每种Si分布分别考虑两种不同的初始翘曲. 一种初始翘曲类似于硅烯的翘曲结构, 其中所有相邻原子(包括Si和C原子) 在z方向相对位移0.3 ?; 另一种是C原子固定在平面内不动, 仅掺杂Si原子在z方向有相对位移0.3 ?. 首先优化图1中所示平面结构获得其总能量E0, 并以此能量为参照进行比较. 为了探索非平面siligraphene, 对每种Si分布的两种初始非平面结构进行弛豫, 并选择能量较低的情况进行研究, 以查看它们最终是非平面还是平面结构. 如果弛豫得到的结构是平面的, 则非平面结构是不稳定的. 如果得到的是非平面结构, 则将其能量和总能量E0比较, 以确定哪个更稳定. 按照以上思路, 对这365种分布的结构进行优化, 计算其总能. 在以下讨论某种Si分布的能量时, 如无特别指出, 都是指该分布经弛豫后所得到结构的最低能量. 用Si原子间绝对距离 (考虑z方向的移动) 的平均值作为指标来描述Si原子的聚集度, 以文献[17, 18]中的高对称和全平g0-SiC7 (图1)的总能E0为参照, 分析总能与Si原子聚集度的关系, 从中找出具有较低能量的分布和结构所具有的特征. 从图2可见, 在文献[17]中具有高对称Si分布和平面结构的g0-SiC7 (图1)的能量几乎处于最高位置, 绝大多数Si分布的能量比g0-SiC7的低很多, g0-SiC7的Si原子平均距离也是最大的. 计算发现的趋势是: 比较聚集的Si原子分布一般有较低的能量; 在相同的Si原子分布情况下, 具有翘曲的非平面结构大多数情况下具有较低能量. 图 2 g-SiC7的总能与Si原子间平均距离的关系, 选取文献[17, 18]中g0-SiC7的总能为参考零点. 图中的罗马数字标记的是能量最低的非平面结构、平面结构和本文中与它们作为比较的一些结构. 插图柱状图代表在在不同能量区间中不等价Si分布在总分布数中的百分比 Figure2. For the relationship between the total energy of g-SiC7 and the average distance between Si atoms, the total energy of g0-SiC7 in the literature [17, 18] is selected as the reference zero point. The Roman numerals in the figure mark the non-planar structures with the lowest energy, planar structures, and some structures compared with them in this article. The inset histogram represents the percentage of unequal Si distribution in the total distribution in different energy intervals.
尽管图2表明对绝大多数Si分布是非平面结构更稳定, 仍有8种分布的平面结构是稳定的, 即从初始具有翘曲的结构出发, 弛豫后体系会回到全平状态. 在这些全平结构中也有Si平均距越小能量越低的趋势(图2). 图2中的结构Ⅴ是能量最低的平面结构, 其原子结构和Si原子分布如图3(a)所示, 其中Si原子分布在一条带上, 占据了原来石墨烯C原子六环中长对角线端点的位置. 在图2中可见, 几乎在结构V的正下方有个非平面结构Ⅳ, 其Si平均距离几乎与结构Ⅴ的相等, 但其能量比平面结构Ⅴ的小. 图3(b)所示为非平面结构Ⅳ, Si原子也分布在一条带上, 占据了C环的短对角线的端点, 两个一组, 高低交错排列. 其他平面结构也都有类似情况, 总存在与其Si分布相近的能量更低的非平面结构. 计算了图2中Ⅴ和Ⅳ结构的声子谱, 发现没有虚频, 所以它们是动力学稳定的. 同时计算了它们的能带, 如图3所示, 可见它们在K和–K处的狄拉克锥仍然保留, 结构Ⅴ和Ⅳ在狄拉克点处分别有0.007 eV和0.009 eV的带隙. 这八种稳定的全平分布不包括文献[16-18]中研究的g0-SiC7 (图2中的结构VII), 因为以往计算g0-SiC7时只考虑了其全平初始结构, 如果让其初始结构中原子具有垂直于平面的位移, 弛豫后会得到能量低得多的非平面结构[11] (图2中的结构VI). 图 3 (a)和(b)中的左图分别对应图2中结构Ⅴ和Ⅳ的俯视图和侧视图, 其中棕色球表示C原子, 红色、绿色和蓝色球分别表示在平面上、平面内和平面下的Si原子, 棱形代表原胞. 中图和右图分别是它们的声子谱和能带 Figure3. The left panels of (a) and (b) are the top and side views of the structures V and IV in Fig. 2, respectively. The brown spheres stand for C atoms. The red, green and blue spheres denote the Si atoms above, inside and below the plane, respectively. The rhombus denotes the unit cell. The middle and right panels are their phonon spectra and energy bands, respectively.
除了这八种分布的平面结构, 其余分布的稳定结构都是有翘曲的, 它们从有初始面外偏移的结构出发, 弛豫后原子不回到平面, 而是得到有翘曲的结构, 且能量比全平结构的能量低. 从图2可见, 随着Si原子平均距离减小, 能量也减小, 说明在siligraphene中, Si原子倾向于聚集. 我们对图2中左下角能量最低的三种结构Ⅰ, Ⅱ和Ⅲ进行了更详细的研究, 其优化后的结构如图4所示, 结构Ⅰ(Ⅱ, Ⅲ)的晶格常数a和b分别为9.88 (9.93, 10.05) ?和10.18 (10.30, 9.90) ?, 计算的能量、带隙和翘曲高度如表1所列. 结构Ⅰ的能量最低, 一个g-SiC7原胞里的四个Si原子聚在一起构成一个Si原子环, 这个环中两个相邻Si原子在平面上面, 另两个相邻Si原子在平面下面, Si的最大翘曲高度有2.84 ?, 比硅烯中的翘曲高度0.44 ?大了很多. 能量比g0-SiC7的能量低了每单位化学式1.85 eV. 为验证其动力学稳定性, 计算了其声子谱, 如图4(a)所示. 声子谱中没有虚频, 说明结构Ⅰ是动力学稳定的. 对其进行第一性原理分子动力学计算, 如图5(a)所示, 在500 K温度下能量在平衡位置附近震荡, 基本维持了原来的形貌, 说明其具有热力学稳定性. 对其弹性模量计算, 如表1所列, 其C11, C12, C22以及C44满足二维材料的玻恩准则(C11C22 – C12 > 0, C44 > 0)[28], 说明它们都是机械稳定的. 计算的能带表明, 虽然翘曲较大, 但是狄拉克能谷得以保存, 在狄拉克点处打开了0.02 eV的带隙. 图 4 (a), (b)和(c)中的左图分别是图2中能量最低结构Ⅰ, Ⅱ和Ⅲ的俯视图和侧视图, 其中棕色球表示C原子, 红色、绿色和蓝色球分别表示在平面上、平面内和平面下的Si原子, 棱形代表原胞, h代表翘曲高度. 中图和右图分别是它们的声子谱和能带. 在能带图中间的颜色梯度图为价带总贝里曲率 Figure4. The left panels in Fig. (a), (b) and (c) are the top and side views of the structures I, II and III in Fig. 2 with the lowest energies, respectively. The brown spheres stand for C atoms. The red, green and blue spheres denote the Si atoms above, inside and below the plane, respectively. The rhombus denotes the unit cell, h denote buckling height. The middle and right panels are their phonon spectra and energy bands, respectively. The central color gradient plane between the bands shows the calculated total Berry curvature of the valence bands.
Structure
Ⅰ-SiC7
Ⅱ-SiC7
Ⅲ-SiC7
Energy/(eV per formula unit)
–1.85
–1.81
–1.80
h/?
2.84
2.45
2.63
Band gap/eV
0.02
0.42
0.26
C11/(N·m–1)
237.30
270.45
219.15
C22/(N·m–1)
178.20
209.40
218.55
C12/(N·m–1)
12.30
31.50
21.90
C44/(N·m–1)
93.60
97.65
95.70
表1最稳定的三种g-SiC7的总能(以g0-SiC7的总能为参照)、翘曲高度h、带隙和弹性模量, 罗马数字与图2中的对应 Table1.The total energy (with respect to the total energy of g0-SiC7), buckling height h, band gap and elastic moduli of the three most stable g-SiC7, the Roman numbers correspond to those in Fig. 2.
图 5 (a), (b)和(c)分别为图2中g-SiC7的能量最低结构Ⅰ, Ⅱ和Ⅲ在500 K温度下的分子动力学模拟结果. 左图为15 ps后的几何结构, 右图为模拟过程中的能量随时间变化 Figure5. (a), (b) and (c) are the molecular dynamics simulations (at 500 K) of the three most stable structures I, II and III of g-SiC7 in Fig. 2. The left and right panels show the structures after 15 ps and the total energies vs time, respectively.