1.School of Physics, Zhengzhou University, Zhengzhou 450000, China 2.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China 3.School of Nuclear Sciences and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:Project supported by the National Key R&D Program of China (Grant No. 2019YFA0404900), the National Natural Science Foundation of China (Grant No. 11875303), and the Key Program of the International Partnership of Bureau of International Cooperation Chinese Academy of Sciences (Grant No. 113462KYSB20160036)
Received Date:12 April 2021
Accepted Date:06 May 2021
Available Online:07 June 2021
Published Online:20 September 2021
Abstract:High energy electron radiography (HEER) proposed first for real-time high spatial and temporal resolution diagnosis of warm dense matter (WDM) and inertial confinement fusion (ICF) has proved experimentally feasible for mesoscale sciences diagnosis. Until now, the spatial resolution of the images close to 1 μm has been reached experimentally which is better than that of X-rays and neutron radiography. However, traditional HEER obtains two-dimensional images which cannot accurately present the three-dimensional structure of the sample. To further improve the capability of HEER to diagnose and obtain the internal information of samples, three-dimensional high energy electron radiography (TDHEER) was put forward by combining HEER with three-dimensional (3D) reconstruction tomography technology. The validity and usage of the TDHEER method have been confirmed through simulation of the fully 3D diagnostic of static mesoscale sample. This paper focuses mainly on the experimental demonstration of the 3D high energy electron radiography. The feasibility of TDHEER is for the first time confirmed by the results achieved with different 3D reconstruction algorithms. The 3D reconstruction algorithms, analytical algorithm-filtered back projection (FBP), iterative algorithms-algebraic reconstruction technique (ART), and simultaneous algebraic reconstruction technique (SART) are used here. In this experiment, the less projected data are used, so it takes the less time to obtain two-dimensional (2D) HEER images and the reconstruction. In order to spend the time as little as possible and obtain the satisfactory quality of reconstruction result, there are three groups of projected image sets, 180, 36 and 18, acquired in our experiment. When all three algorithms are adopted in 180 projected images, the reconstructed images show that all three algorithms FBP, ART and SART are feasible for TDHEER. The different reconstructed slice images of the sample in X-, Y-, and Z- direction clearly show the detailed structure of the sample. The images reconstructed by ART and SART algorithm are equivalent. Comparing with ART and SART, the reconstruction results by FBP can show more details, but there are some artifacts. Because the 36 2D HEER images fail to satisfy the Nyquist sampling theory, the analytic algorithm FBP is not used. Taking the result of FBP reconstructed by 180 images as a standard reference to compare the result of ART with the results of SART, the images reconstructed by the SART algorithm are closer to the original images. Testing 18 images, the results of the ART and SART both have lots of artifacts but the SART algorithm spends less time in reconstruction. As fewer projected images are used, more artifacts are found in the reconstructed images. Therefore, it is advantageous to combine the SART algorithm with 36 HEER projected images, which obtains high-quality reconstruction images and spends less time. The feasibility of TDHEER is confirmed experimentally for the first time and all three dimensions of the sample structures are obtained. Of the three different 3D reconstruction algorithms, the SART algorithm is the most suitable for reconstructing the few-view images. The TDHEER technology will extend HEER’s application fields, especially for mesoscale sciences. Keywords:high energy electron radiography/ three-dimensional reconstruction algorithm/ three-dimensional high energy electron radiography/ mesoscale sciences
全文HTML
--> --> --> 1.引 言近年来, 有关高能密度物理(high energy density physics, HEDP)和惯性约束聚变(inertial confinement fusion, ICF)的研究日益受到重视并得到发展, 特别是其诊断方法是面临的一大挑战[1]. 为了对HEDP和ICF进行深入研究, 提出了一种具有高时空分辨的高能电子成像技术(high energy electron radiography, HEER)[2]. 目前高能电子成像技术在仿真和实验中都得到了很好的研究[3-8]. 由于高能电子束穿透力强, HEER可以用于较厚样品(几十微米到毫米)的诊断, 现阶段通过实验表明HEER的空间分辨率接近1 μm[9]. 目前许多射线照相诊断工具都基于X射线、中子和质子束. 以软X射线为基础的X射线显微镜是研究生物材料的理想选择. 硬X射线(光子能量大于10 keV)由于其超强的穿透力被用于临床医学诊断疾病、工程和工业检测缺陷. X射线点投影背光成像已被用于高能量密度物质(high energy density materials, HEDM)实验[10], 其空间分辨率约为10 μm[11]. 在SG-II升级激光设备上, 用短脉冲激光驱动的硬X射线进行了双壳内爆实验[12], 但通过X射线获得的图像空间分辨率不及HEER. 短脉冲中子被应用于了解温稠密物质的动态过程[13]. 中子射线照相的优势在于对低原子序数元素的材料具有极高的敏感性[14]. HEDM的材料一般由重金属组成, 中子射线对其不敏感, 且中子与金属之间的反应截面太小, 无法有效地对HEDM成像. 中子成像诊断是NIF进行惯性聚变研究的工具, 但其成像的空间分辨率大于10 μm[15], 大于HEER的空间分辨率. 高能质子射线照相术在诊断HEDM时显示了其优异的性能[16]. 然而在实验室中不容易产生超短脉冲(ps量级)的高能质子束, 而高能电子成像具有高时空分辨率的优势. 由于质子与物质之间的相互作用相对单一, 因此很难反映物质的不同性质. 此外对比高能质子加速器, 高能电子加速器和相应的成像系统造价更低廉. 高能电子三维重建(three-dimensional high energy electron radiography, TDHEER)技术将HEER与三维(three dimensions, 3D)重建算法相结合, TDHEER技术的有效性和可行性已通过静态中尺度样品的模拟实验研究得到证实[17]. 为了通过实验验证该技术, 在本文研究中进行了毫米级样本的重建. 根据Nyquist采样理论, 重建使用的投影数据越少, 则同种算法重建所花费的时间就越少, 但会增加伪影降低图像质量. 重建的目标是在满足重建结果质量的同时, 花费尽可能少的时间. 因此在实验中分别使用了三组不同数目的投影图像集: 180, 36和18, 以及三种不同的重建算法, 包括解析和迭代算法来重建样本. 结果发现, 使用不同的算法及投影集重建的图像质量和重建时间是不同的. 为提高重建图像的质量并且减少重建时间, 有必要选择合适的算法.
解析重建算法FBP能够克服常规反投影的局限性, 当FBP被应用于180幅2D HEER图像的全角度投影重建时, 其重建结果要优于稀疏角度投影重建[20]. 因此采用由HEER平台收集的样本180幅HEER图像(从0o到179o, 间隔1o)用于三维重建. 最基础的迭代重建算法是ART, 当使用稀疏投影数据时, 诸如ART之类的迭代算法的重建结果要优于FBP[28], 但ART要比FBP花费更多的重建时间. 当使用与ART相同的参数时, 采用SART可获得与ART大致相同的图像质量但其重建时长在FBP和ART之间[29]. 在重建过程中, 调整ART和SART的松弛因子、迭代次数和迭代初始值, 以获得良好的重建结果. FBP, ART和SART算法重建的样品分成X, Y和Z三个方向, 每个方向中共有236个重建切片, 切片大小为6.24 cm × 6.24 cm. 在X方向上重建的从X –到X +的第95, 134和145层的切片如图5所示. 在Y方向上重建的从Y –到Y +的第89, 124和150层的切片如图6所示. 在Z方向上重建的从Z –到Z +的第52, 120和155层的切片如图7所示. 图 5 从X–到X+在第95, 134和145层使用不同算法重建的切片的结果 (a)?(c) FBP; (d)?(f) ART; (g)?(i) SART Figure5. Results of reconstructed slices with different algorithms, at the 95th, 134th and 145th layers from X– to X+: (a)?(c) FBP; (d)?(f) ART; (g)?(i) SART.
图 6 在Y–到Y+的第89, 124和150层使用不同算法重建的切片的结果 (a)?(c) FBP; (d)?(f) ART; (g)?(i) SART Figure6. Results of reconstructed slices with different algorithms, at the 89th, 124th and 150th layers from Y– to Y+: (a)?(c) FBP; (d)?(f) ART; (g)?(i) SART.
图 7 从Z–到Z+在第52, 122和155层使用不同算法重建的切片的结果 (a)?(c) FBP; (d)?(f) ART; (g)?(i) SART Figure7. Results of reconstructed slices with different algorithms, at the 52nd, 122th and 155th layers from Z– to Z+: (a)?(c) FBP; (d)?(f) ART; (g)?(i) SART.
根据图5—7中的重建图像可知, 三种算法FBP, ART和SART都可用于高能电子三维成像. 与ART和SART相比, FBP的重建结果可以显示更多细节, 但存在一些伪影. 分析FBP, ART和SART重建的Y方向上的第124层切片中第151列的像素灰度分布图, 如图8(b)所示, 即图8(a)中红线位置的像素灰度分布. 根据曲线走势分布表明, ART和SART算法重建的图像是等效的. 图 8 (a) FBP重建的从Y–到Y +第124个切片图像; (b) 是(a)中红线的像素灰度分布图 Figure8. (a) The 124th slice image from Y– to Y+ reconstructed by FBP; (b) the pixels grayscale of the red line of panel (a).