Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61731005, 61901086), the Postdoctoral Innovation Talents Support Program, China (Grant No. BX20180057), the Applied Foundational Research Project of Sichuan Province, China (Grant No. 2021YJ0100), and the Fundamental Research Fund for the Central Universities, China (Grant No. ZYGX2019J101)
Received Date:09 February 2021
Accepted Date:21 April 2021
Available Online:28 September 2021
Published Online:20 October 2021
Abstract:Radiation power of an electromagnetic wave plays a decisive role in its transmission distance. Traditionally, the radiation power can be improved by expanding the radiation aperture size of the antenna array or increasing input power of the unit cell. However, the radiation aperture size is always restricted by assembly space. The input power improvement of the unit cell is always limited by the signal source. It is difficult to improve radiation power on a finite radiation aperture. However, the radiation power on a finite radiation aperture is related closely to the number of antenna elements and the radiation efficiency of the antenna array. It is useful to arrange more elements and improve radiation efficiency of the antenna array to improve the radiation power on a finite radiation aperture. Wideband wide-angle scanning phased array is able to make full use of a finite radiation aperture. The wide-angle scanning properties make it possible for the radiated power to cover a wide area. In this paper, a compact wideband wide-angle scanning tightly coupled dipole array (TCDA) is proposed. A high permittivity substrate and compact wideband balun are used for miniaturizing the antenna array. The period of the unit cell is only 0.144λhigh × 0.144λhigh (λhigh is the wavelength at the highest operation frequency in free space). Parameters of the balun are optimized to improve impedance matching between the balun and the antenna array. Two bilateral frequency selective surfaces (FSSs) are used to replace traditional dielectric superstrate to improve the impedance matching between the antenna array and free space. A low-loss dielectric substrate is used to reduce dielectric loss of the antenna array. In these ways, the radiation efficiency is greatly improved. The simulation results show that the proposed antenna array operates at 1.7–5.4 GHz (3.2:1) while scanning up to 65° in the E plane, 45° in the H plane and 60° in the D plane with following a rigorous impedance matching criterion (active VSWR < 2). A 16 × 16 prototype array is fabricated and measured. Good agreement is achieved between the simulation results and the measurement results. Compared with the designs in the literature, the proposed antenna array has an excellent performance in radiation power on a finite radiation aperture. Keywords:radiated power/ radiation aperture/ phased array antennas/ wideband wide-angle scanning
全文HTML
--> --> --> -->
2.1.天线单元设计
紧耦合天线阵利用临近单元的电容耦合, 抵消低频时来自地板的电感, 天线阵低频的性能表现得到改善, 从而具有较宽的阻抗带宽. 紧耦合天线单元一般由三个部分组成: 宽带巴伦、偶极子辐射单元和宽带宽角匹配层. 其中, 宽带巴伦起着平衡馈电的作用, 同时也起着馈电端和偶极子辐射单元的阻抗匹配的作用; 宽带宽角匹配层主要用于改善天线阵在大角度扫描时的性能表现. 紧耦合天线阵在E面扫描时具有较宽的阻抗带宽, 在H面扫描时的阻抗带宽较窄. 因此, 在设计时, 先优化天线阵在E面扫描时的性能, 再加上宽带宽角匹配层改善天线阵在H面扫描时的性能. 天线单元设计的具体步骤如下: 1) 根据设计天线的最高工作频率和介质基板相关参数(介电常数和厚度), 确定天线单元间距; 2) 根据天线单元间距, 设计出满足宽带馈电和阻抗变换需求的紧凑型巴伦; 3) 调节耦合贴片宽度和偶极子辐射单元离地板的高度, 改善天线阵在E面宽角扫描时的性能; 4) 加载两层双面的匹配层, 经过参数优化, 改善天线阵在H面宽角扫描时的性能. 本文设计的天线单元结构如图1所示, 由微带-共面带线的巴伦、偶极子单元、两层双面的匹配层共三部分组成. 介质基板型号为Rogers 6110, 介电常数10.2, 损耗正切0.0023, 厚度0.64 mm. 偶极子两臂印制在介质基板的两面, 便于临近单元进行电容耦合. 天线单元相关的参数在图1(a)中标示, 具体数值为: A = 29.3 mm, B = 8 mm, C = 3.7 mm, D = 0.8 mm, E = 3.2 mm, F = 4.2 mm, G = 3 mm, H = 2.5 mm, I = 2.2 mm, J = 2.2 mm, K = 3.7 mm, L = 0.8 mm, W1 = 0.4 mm, W2 = 0.3 mm, W3 = 0.2 mm, W4 = 0.6 mm, W5 = 0.6 mm, L1 = 3.5 mm, L2 = 3.5 mm, L3 = 1.8 mm, L4 = 2 mm, L5 = 2.5 mm, Gap=0.8 mm. 天线单元在x和y方向周期均为0.144λhigh, 高度为29.3 mm (约为0.166λlow, 其中λlow为自由空间中最低工作频率对应的波长). 图 1 天线单元结构 (a) 前视图 (红色馈线下方的地板被移除); (b) 后视图 Figure1. Unit Cell of the TCDA: (a) Front view of the unit cell (the ground of the red parts is etched); (b) back view of the unit cell.
32.1.1.宽带巴伦的设计 -->
2.1.1.宽带巴伦的设计
本文设计的天线单元采用了加载空气补偿的微带-共面带线的巴伦, 结构如图1(a)所示. 巴伦的红色馈线部分下方地板被移除, 通过这种空气补偿的方式, 可以产生新的谐振点, 新的谐振点和原来的谐振点离得很近时, 可以拓宽巴伦的工作带宽[11]. 从图2中的仿真结果可以看出, 采用空气补偿的巴伦相比于未采用空气补偿的巴伦具有更宽的工作带宽. 此外, 由于天线单元要求占据较小的口径面积, 经优化设计, 减小L3的值, 使得巴伦结构更为紧凑. 图 2 红色馈线下方地板未移除和地板移除时巴伦的反射系数 Figure2. Reflection coefficients of the balun with and without the etched ground of the red feeding parts.
32.1.2.宽带宽角匹配层的设计 -->
2.1.2.宽带宽角匹配层的设计
相控阵天线扫描时, 天线单元的辐射电阻随着扫描角度的变化而变化. 一般在天线上方放置一块介质匹配层, 使得天线阵和自由空间有更好的阻抗匹配[12], 以改善天线阵的宽角扫描性能. 周期结构的频率选择表面匹配层可以替代传统的笨重且昂贵的介质匹配层. 周期结构的频率选择表面可视为超材料的一种, 其等效相对介电常数和相对磁导率可以根据文献[13]计算求得. 从图3可以看出, 天线阵加载两层双面的频率选择表面匹配层, 和无匹配层加载时相比, 在H面扫描时具有更好的阻抗匹配表现. 图 3 无限大阵列有加载和无加载匹配层在H面45°扫描时, 天线单元有源驻波比 Figure3. Active VSWRs of the unit cell at 45° scanning in the H plane in infinite array simulation with and without frequency selective surfaces.
22.2.无限大阵列仿真结果 -->
2.2.无限大阵列仿真结果
32.2.1.交叉极化比 -->
2.2.1.交叉极化比
图4(a)是无限大阵列在不同平面不同角度扫描时的交叉极化比. 可以看出, 在边射和H面45°扫描时, 在大多数频段, 交叉极化比均小于–15 dB; 在E面65°扫描时, 在大多数频段, 交叉极化比均小于–20 dB. 同时也注意到, 在边射、E面65°、H面45°和D面60°扫描时, 随着频率的升高, 交叉极化变差. 这是因为: 1) 偶极子的两臂印制在介质基板的两面, 电场和天线所在的平面不平行, 垂直于天线所在平面存在电场分量, 频率越高, 交叉极化恶化越严重, antipodal Vivaldi天线也有类似表现[14]; 2) 天线单元之间间距较小, 导致沿着H面的临近单元(y方向)会产生强耦合, 如图4(b)所示, 这些强耦合会恶化交叉极化水平, 频率越高, 耦合越强, 交叉极化恶化越严重. 图 4 无限大阵列交叉极化水平 (a) 在不同面不同角度扫描时的交叉极化比; (b) 在3 GHz边射时, 天线口径面电场分布 Figure4. Cross polarization level in infinite array simulation: (a) Cross polarization ratio at different angles scanning in different planes; (b) electric field on radiation aperture at 3 GHz.
32.2.2.辐射效率 -->
2.2.2.辐射效率
图5给出了无限大阵列在不同平面不同角度扫描时的辐射效率. 在边射时, 阵列效率最低值为67%, 在大多数频段, 效率均大于75%; 在E面65°扫描时, 在大多数频段, 效率均大于70%; 在H面45°扫描时, 在大多数频段, 效率均大于75%; 在D面60°扫描时, 在大多数频段, 效率均大于65%. 然而, 在高频情况下, 在H面45°和D面60°扫描时, 天线阵辐射效率变低, 这是由于在高频时巴伦的阻抗匹配变差所致. 图 5 无限大阵列在边射、E面65°、D面60°和H面45°扫描时, 天线阵的辐射效率 Figure5. Radiation efficiency of the proposed antenna array at broadside, 65° scanning in the E plane, 45° scanning in the H plane and 60° scanning in the D plane.
32.2.3.天线单元有源驻波比 -->
2.2.3.天线单元有源驻波比
从图6可以看出, 无限大阵列在边射、E面65°、H面45°和D面60°扫描时, 在1.7—5.4 GHz的频段内, 天线单元有源驻波比均小于2, 说明该阵列具有宽带宽角扫描性能, 同时保持良好的阻抗匹配. 图 6 无限大阵列在边射、E面65°、H面45°和D面60°扫描时, 天线单元有源驻波比 Figure6. Active VSWRs of the unit cell in infinite array simulation at broadside, 65° scanning in the E plane, 45° scanning in the H plane and 60° scanning in the D plane.
-->
3.1.远场测试结果
在3和5 GHz时, 天线阵E面、D面、H面在不同角度扫描时的测试和仿真的归一化方向图如图9—图11所示. 可以看出, 在低频时, 天线阵的主波束较宽; 在高频时, 天线阵的主波束较窄, 这是由于低频时天线阵辐射口径电尺寸较小、高频时天线阵辐射口径电尺寸变大所致. 同样地, 由于天线阵辐射口径的电尺寸较小, 在低频时, 阵列的主波束扫描角度未能到达最大扫描角度. 采用更大的阵列结构, 会改善这种情况. 图 9E面0°, 45°, 65°扫描时的归一化方向图 (a) 3 GHz; (b) 5 GHz Figure9. Normalized radiation patterns at 0°, 45° and 65° scanning in the E plane: (a) 3 GHz; (b) 5 GHz.
图 10H面0°, 45°扫描时的归一化方向图 (a) 3 GHz; (b) 5 GHz Figure10. Normalized radiation patterns at 0° and 45° scanning in the H plane: (a) 3 GHz; (b) 5 GHz.
图 11D面0°, 45°, 60°扫描时的归一化方向图 (a) 3 GHz; (b) 5 GHz Figure11. Normalized radiation patterns at 0°, 45° and 60° scanning in the D plane: (a) 3 GHz; (b) 5 GHz.